Study of Selected Natural Materials Ignitability

Article Preview

Abstract:

This scientific study deals with a complex research of initiation process of selected natural materials. The first chapter deals with research of the influence of density and thermal modification of spruce wood (Picea abies (L.) Karst.) on the critical heat flux density for the pilot ignition. In this chapter the thermally modified and unmodified samples of a spruce wood were investigated. The thermally modified samples were prepared according to temperature program for the ThermoWood - Thermo-S (maximum temperature during the thermal modification was 190 °C) and ThermoWood - Thermo-D (the maximum temperature during the thermal modification was 212 °C) production. Critical density of heat flux was determined on a cone calorimeter test by procedures in accordance with ISO 5660-1:2002. The obtained results showed that the thermally modified spruce wood in comparison with the thermally unmodified one had higher critical density of heat flux. The second chapter is aimed on determination of ignition activation energy of pure cellulose, cellulose impregnated by water solutions of KHCO3 and (NH4)2HPO4 with concentrations of 5, 10 and 15 wt. % and on determination of ignition activation energy of dust from beech wood (Fagus sylvatica L.). The activation energies were determined in accordance with isothermal, dynamic and non-isothermal model-free methods. The obtained results showed that the ignition activation energy of cellulose impregnated by water solutions of KHCO3 and (NH4)2HPO4 have lower activation energy than the pure cellulose. The obtained data on the activation energy of beech wood dust showed that the activation energy depends significantly on the degree of conversion. Chapter three deals with the research of inclination of selected vegetable oils (Linseed, Sesame and Sunflower oil) applied to cotton to self-ignite. The propensity towards spontaneous combustion of the mentioned oils was investigated by Mackey test and Accelerating Rate Calorimetry. The results showed that the ratios of oil mass to the mass of the carrier, on which oil is applied, had significant impact on the propensity of vegetable oil to the spontaneous combustion. The highest propensity to spontaneous combustion of the investigated materials showed the Linseed oil.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

201-261

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Babrauskas and R.D. Peacock: Heat Release Rate: The Single Most Important Variable in Fire Hazard. Fire Saf. J. Vol. 18 (1992) pp.255-272.

DOI: 10.1016/0379-7112(92)90019-9

Google Scholar

[2] J. Martinka, T. Chrebet and K. Balog: An assessment of petrol fire risk by oxygen consumption calorimetry. J. Therm. Anal. Calorim. (2014). DOI 10. 1007/s10973-014-3686-6.

DOI: 10.1007/s10973-014-3686-6

Google Scholar

[3] Q. Xu, A. Majlingová, M. Zachar, C. Jin and Y. Jiang: Correlation analysis of cone calorimetry test data assessment of the procedure with tests of different polymers. J. Therm. Anal. Calorim. Vol. 110 (2012) pp.65-70.

DOI: 10.1007/s10973-011-2059-7

Google Scholar

[4] Q. Xu, M. Zachar, A. Majlingová, C. Jin and Y. Jiang: Evaluation of plywood fire behaviour by ISO tests. European Journal of Environmental and Safety Sciences. Vol. 1 (2013) pp.1-7.

Google Scholar

[5] V. Mózer: On equivalent fire exposure. European Journal of Environmental and Safety Sciences. Vol. 1 (2013) pp.18-23.

Google Scholar

[6] M. Zachar, I. Mitterová, Q. Xu, A. Majlingová, J. Cong and Š. Galla: Determination of Fire and Burning Properties of Spruce Wood. Drv. Ind. Vol. 63 (2012) pp.217-223.

DOI: 10.5552/drind.2012.1141

Google Scholar

[7] I. Mitterová and M. Zachar: The comparison of flame retardants efficiency when exposed to heat, in: Modern trends in ergonomics and occupational safety, edited by G. Dudarski, J. Martinka, M. Rybakowski and I. Tureková, University of Zielona Góra, Zielona Góra, Poland (2013).

DOI: 10.15557/pimr.2021.0036

Google Scholar

[8] L. Makovická Osvaldová, A. Osvald and D. Kačíková: Coniferous wood - reaction on fire in forest condition. Am. Int. J. Contemp. Res. Vol. 2 (2012) pp.37-46.

Google Scholar

[9] A. Osvald and L. Osvaldová: Retardation of spruce wood burning (Technical University in Zvolen, Slovakia 2003).

Google Scholar

[10] L. Tereňová: Impact of moisture on the ignition temperature of spruce wood, in: Wood and fire safety, edited by A. Osvald, Šmíra Print, Ostrava, Czech Republic (2012).

Google Scholar

[11] E. Orémusová: Influence of the retardation substances applied by various technological procedures on beech veneers combustion heat, in: Fire engineering, edited by I. Marková, Sabovci Brothers, Zvolen, Slovakia (2002).

Google Scholar

[12] ISO 871: 2006: Plastics – Determination of ignition temperature using a hot-air furnace.

Google Scholar

[13] P. Kučera, A. Lokaj and V. Vlček: Behavior of the spruce wood and birch wood from fire safety point of view. Adv. Mater. Res. Vol. 842 (2014) pp.725-728.

DOI: 10.4028/www.scientific.net/amr.842.725

Google Scholar

[14] P. Kučera, A. Lokaj and D. Kačíková: Assessment of reliability of timber structures elements exposed large-scale fire test. Acta Facultatis Xylologiae. Vol. 54 (2012) pp.95-104.

Google Scholar

[15] J. Ladomerský: Emission analysis and minimization from the wood waste combustion. Wood Res. Vol. 45 (2000) pp.33-44.

Google Scholar

[16] J. Ladomerský, E. Hroncová and D. Samešová: Investigation of appropriate conditions for wood wastes combustion on basis of emission. Drew. Vol. 46 (2003) pp.90-98.

Google Scholar

[17] J. Ladomerský and E. Hroncová: Investigation of wood waste combustion efficiency in burning chamber on basis of emission. Acta. Mech. Slovaca. Vol. 7 (2003) pp.595-600.

Google Scholar

[18] J. Martinka, D. Kačíková, E. Hroncová and J. Ladomerský: Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions. J. Therm. Anal. Calorim. Vol. 110 (2012) pp.193-198.

DOI: 10.1007/s10973-012-2261-2

Google Scholar

[19] M. Moravec and P. Liptai: Recycling of screens and monitors, in: VIII Scientific conference for PhD students of faculty of mechanical engineering of technical university of Košice (Technical university of Košice, Slovakia 2009).

DOI: 10.24867/jpe-2021-02-009

Google Scholar

[20] L. Shi and MIL. Chew: Experimental study of woods under external heat flux by autoignition. J. Therm. Anal. Calorim. Vol. 111 (2012) pp.1399-1407.

DOI: 10.1007/s10973-012-2489-x

Google Scholar

[21] MA. Delichatsios, TH. Panagiotou and F. Kiley: The use of time to ignition data for characterizing the thermal inertia and the minimum (critical) heat flux for ignition or pyrolysis. Combust. Flame. Vol. 84 (1991) pp.323-332.

DOI: 10.1016/0010-2180(91)90009-z

Google Scholar

[22] E. Mikkola and IS: Wichman: On the thermal ignition of combustible materials. Fire. Mater. Vol. 14 (1989) pp.87-96.

DOI: 10.1002/fam.810140303

Google Scholar

[23] T. Harada: Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test. Fire. Mater. Vol. 25 (2001) pp.161-167.

DOI: 10.1002/fam.766

Google Scholar

[24] V. Babrauskas: Ignition of wood: a review of the state of the art, in: Interflam (Interscience Communications, United Kingdom 2001).

Google Scholar

[25] M. Buštorová, J. Martinka and I. Tureková: The influence of OSB boards thickness on their induction period of ignition, in: Kolokvium ku grantovým úlohám VEGA, edited by I. Čabalová, Technical University in Zvolen, Zvolen, Slovakia (2011).

Google Scholar

[26] R. Carvel, T. Steinhaus, G. Rein and JL. Torero: Determination of the flammability properties of polymeric materials: A novel method. Polym. Degrad. Stab. Vol. 96 (2011) pp.314-319.

DOI: 10.1016/j.polymdegradstab.2010.08.010

Google Scholar

[27] E. Mikkola: Ignitability of solids materials, in: Heat release in fires, edited by V. Babrauskas and SJ: Grayson, Interscience Communications, London, UK (2009).

Google Scholar

[28] A. Osvald, P. Komárek and Ľ. Hubačková: Evaluation of selected wood species from the perspective of fire protection (Technical University in Zvolen, Slovakia 2007).

Google Scholar

[29] M. Zachar: Influence of heating on thermal degradation of selected wood species (Technical University in Zvolen, Slovakia 2009).

Google Scholar

[30] R. Kallonen: Test methods for fire hazards of construction plastics (Technical research centre of Finland, Finland 1988).

Google Scholar

[31] SV. Glass and SL. Zelinka: Moisture relations and physical properties of wood, in: Wood handbook (Forest Products Laboratory, USA 2010).

Google Scholar

[32] ZT. Yu, X. Xu, LW. Fan, YC. Hu and KF. Cen: Experimental measurements of thermal conductivity of wood species in china: effects of density, temperature, and moisture content. For. Prod. J. Vol. 61 (2012) pp.130-135.

DOI: 10.13073/0015-7473-61.2.130

Google Scholar

[33] F. Shafizadeh: The chemistry of pyrolysis and combustion, in: The chemistry of solid wood edited by R. Rowell, American Chemical Society, Washington, USA (1984).

Google Scholar

[34] D. Fengel and G. Wegener: Wood: chemistry, ultrastructure, reactions (Walter de Gruyter, Germany 1984).

Google Scholar

[35] L. Dzurenda: Combustion of wood and bark (Technical University in Zvolen, Slovakia 2005).

Google Scholar

[36] E. Ružinská: The study of thermal characteristics of modified products isolated from kraft black liquor for formulation of new type of adhesive mixtures. Wood Res. Vol. 48 (2003) pp.22-35.

Google Scholar

[37] E. Ružinská: Recycling wastes from the processing of biomass for the preparation of perspective wood composites. Waste Forum. Vol. 4 (2010) pp.338-345.

Google Scholar

[38] K. Balog: Autoignition (SPBU, Czech Republic 1999).

Google Scholar

[39] Q. Jianmin: Prediction of LIFT data from cone calorimeter measurements, in: Heat release in fires, edited by V. Babrauskas and SJ: Grayson, Interscience Communications, London, UK (2009).

Google Scholar

[40] V. Babrauskas and SJ. Grayson: Heat release in fires (Interscience communications, UK 2009).

Google Scholar

[41] V. Babrauskas: Ignition handbook (Fire Science Publishers, USA 2003).

Google Scholar

[42] G. Varga and A. Važanová: Determination of the activation energy by linear heating method, in: VIII Scientific Conference of PhD students and young scientists held under the auspices FPV with international participation (UKF, Slovakia 2007).

Google Scholar

[43] MJ. Starink: The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta. Vol. 404 (2003) pp.163-176.

DOI: 10.1016/s0040-6031(03)00144-8

Google Scholar

[44] BA. Howell: The utility of variable temperature techniques in thedetermination of kinetic parameters. Thermochim. Acta. Vol. 388 (2002) pp.275-281.

DOI: 10.1016/s0040-6031(02)00018-7

Google Scholar

[45] BA. Howell and JA. Ray: Comparison of isothermal and dynamic methods for the determination of activation energy by thermogravimetry. J. Therm. Anal. Calorim. Vol. 83 (2006) pp.63-66.

DOI: 10.1007/s10973-005-7251-1

Google Scholar

[46] T. Chrebet: Influence of external condition on ignition of wood and materials on the base of wood (Slovak University of Technology in Bratislava, Slovakia 2010).

Google Scholar

[47] ISO 871: 2006: Plastics - Determination of ignition temperature using a hot-air furnace.

Google Scholar

[48] T. Kotoyori: Critical ignition temperatures of wood sawdusts. Fire Saf. Sci. Vol. 463 (1985) pp.115-121.

Google Scholar

[49] T. Hiarata, S. Kawamoto and T. Nishimoto: Thermogravimetry of wood treated with water-insoluble retardants and a proposal for development of wood materials. Fire Mater. Vol. 15 (1991) pp.27-36.

DOI: 10.1002/fam.810150106

Google Scholar

[50] K. Balog: Study of flaming and nonflaming combustion process of cellulosic materials (VŠCHT, Slovakia 1986).

Google Scholar

[51] C. Dohare and N. Mehta: J. Alloy. Compd. Vol. 587 (2014) p.565.

Google Scholar

[52] C. Pacurariu and I. Lazau: J. Non-Cryst. Solids. Vol. 358 (2012) p.3332.

Google Scholar

[53] Q. Wang, J. Qiang, Y. Wang, J. Xia, H. Huang, D. Wang and C. Dong: J. Non-Cryst. Solids. Vol. 353 (2007) p.3421.

Google Scholar

[54] S. Srivastava, M. Zulfequar and A. Kumar: Journal of Non-Oxide Glasses. Vol. 2 (2010) p.97.

Google Scholar

[55] G. Benchabane, Z. Boumerzoug, I. Thibon and T. Gloriant: Mater. Charact. Vol 59 (2008) p.1425.

Google Scholar

[56] M. Malow and U. Krause: J. Loss. Prevent. Proc. Vol. 17 (2004) p.51.

Google Scholar

[57] S.M. Pourmortazavi, S.G. Hosseini, M. Rahimi-Nasraubadi, S.S. Hajimirsadeghi and H. Momenian: J. Hazard. Mater. Vol. 162 (2009) p.1141.

Google Scholar

[58] M. Nasui, T. Petrisor Jr., R.B. Mos, A. Mesaros, R.A. Varga, B.S. Vasile, T. Ristoiu, L. Ciontea and T. Petrisor: J. Anal. Appl. Pyrol. Vol. 106 (2014) p.92.

DOI: 10.1016/j.jaap.2014.01.004

Google Scholar

[59] S. Boontima, C. Danvirutai and T. Srithanratana: Solid. State. Sci. Vol. 12 (2010) p.1226.

Google Scholar

[60] L. Tian, N. Ren, J.J. Zhang, H.M. Liu, J.H. Bai, H.M. Ye and S.J. Sun: Inorg. Chim. Acta. Vol. 362 (2009) p.3388.

Google Scholar

[61] P. Rantuch, D. Kačíková, J. Martinka, K. Balog: Acta Facultatis Xylologiae, Vol. 56 (2014) p.97.

Google Scholar

[62] M. Rybakowski, G. Dudarski, A. Očkajová and J. Stebila: Adv. Mater. Res. Vol. 805-806 (2013) p.1771.

DOI: 10.4028/www.scientific.net/amr.805-806.1771

Google Scholar

[63] G. Gai, Y. Dong and T. Zhang: Bioresource Technol. Vol. 127 (2013) p.298.

Google Scholar

[64] X. Gu, C. Liu, X. Jiang, X. Ma, L. Li, K. Cheng and Z. Li: J. Anal. Appl. Pyrol. Vol. 106 (2014) p.177.

Google Scholar

[65] MV. Kok and E. Őzgűr: Fuel. Process. Technol. Vol. 106 (2013) p.739.

Google Scholar

[66] AS. Gundogar and MV. Kok: Fuel. Vol. 123 (2014), p.59.

Google Scholar

[67] H. Kissinger: J Res Nat. Bur. Stand. 57(1956) p.217.

Google Scholar

[68] T. Ozawa: J. Therm. Anal. Calorim. Vol. 2 (1970) p.301.

Google Scholar

[69] P. G. Bosswell: J. Therm. Anal. Calorim. Vol. 18 (1980), p.353.

Google Scholar

[70] T. Akahira and T. Sunose: Sci. Technol. Vol. 16 (1971) p.22.

Google Scholar

[71] J. Flynn and L. Wall: J. Polym. Sci. Pol. Lett. Vol. 4 (1966) p.323.

Google Scholar

[72] T. Ozawa: B. Chem. Soc. Jpn. Vol. 38 (1965) p.1881.

Google Scholar

[73] ASTM E1641-13: Standard Test Method for Decomposition Kinetics by Thermogravimetry Using the Ozawa/Flynn/Wall Method.

DOI: 10.1520/e1641-13

Google Scholar

[74] W. Tang, Y. Liu, H. Zhang and C. Wang: Thermochim. Acta. Vol. 408 (2003) p.39.

Google Scholar

[75] MJ. Starink: Thermochim. Acta. Vol. 288 (1996) p.97.

Google Scholar

[76] MJ. Starink: Thermochim. Acta Vol. 404 (2003) p.163.

Google Scholar

[77] MJ. Prins, KJ. Ptasinski and F.J.J.G. Janssen: J. Anal. Appl. Pyrol. Vol. 77 (2006) p.35.

Google Scholar

[78] A. Demirbas: J. Anal. Appl. Pyrol. Vol. 73 (2005) p.39.

Google Scholar

[79] M. Nik-Azar, MR. Hajaligol, M. Sohrabi and B. Dabir: Fuel. Process. Technol. Vol. 51 (1977) p.

Google Scholar

[80] A. Demirbas: J. Anal. Appl. Pyrol. Vol. 72 (2004) p.215.

Google Scholar

[81] G. Mishra and S. Saka: Bioresource. Technol. Vol. 102 (2011) p.10946.

Google Scholar

[82] DK. Shen, S. Gu, K.H. Luo, AV. Brighwater and M.X. Fang: Fuel. Vol. 88 (2009) p.1024.

Google Scholar

[83] Q. Liu, S. R. Wang, M. X. Fang, M. Luo, KF. Cen and WK. Chow: Bench-Scale Studies On Wood Pyrolysis Under Different Environments. Asia-oceania Symphosium on Fire Science and Technology 7, (2007).

Google Scholar

[84] F. Sliwa, NE. Bounia, G. Martin, F. Charrier and F. Malet: Polym. Degrad. Stabil. Vol. 97 (2012) p.496.

Google Scholar

[85] C. Branca and C. Di Blasi: Fuel. Vol. 83 (2004) p.81.

Google Scholar

[86] O. Senneca, R. Chirone and P. Salatino: J. Anal. Appl. Pyrol. Vol. 71 (2004) p.959.

Google Scholar

[87] CJ. Gómez, E. Mészáros, E. Jakab, E. Velo and L. Puigjaner: J. Anal. Appl. Pyrol. Vol. 80 (2007) p.416.

Google Scholar

[88] A. Hazarika, M. Mandal and TK. Maji: Compos. Part B-Eng. Vol. 60 (2014) p.568.

Google Scholar

[89] M. Amutio, G. Lopez, R. Aguado, M. Artetxe, J. Bilbao and M. Olazar: Fuel. Vol. 95 (2012) p.305.

DOI: 10.1016/j.fuel.2011.10.008

Google Scholar

[90] Y. Elmay, M. Jeguirim, S. Dorge, G. Trouvé and R. Said: Energy. Vol. 44 (2012) p.7.

Google Scholar

[91] F. Bonnefoy, P. Gilot and G. Prado: J. Anal. Appl. Pyrol. Vol 25 (1993) p.387.

Google Scholar

[92] A. Kostolanský: Application of Mackey test to evaluation of substances from the perspective of self-ignition tendency. Spravodajca. Vol. 34 (2003) pp.27-29.

Google Scholar

[93] H. Vežníková: Evaluation of risk of self-heating of solids in mixtures with oxidizable oils. Arops. Vol. 24 (2006) pp.16-23.

Google Scholar

[94] I. Hrušovský: Investigation of Self-heating and spontaneous ignition of oils (Leibniz Institute for Solid State and Materials Research Dresden, Germany 2013).

Google Scholar

[95] J. Dehaan: Kirk´s fire investigation (Prentice hall, USA 2002).

Google Scholar

[96] United Nations Economic Commission for Europe: Recommendations on the transport of dangerous goods (United Nations Economic Commission for Europe, Switzerland 2009).

DOI: 10.18356/1571d99c-en

Google Scholar

[97] T. Grewer: Thermal hazards of chemical reactions (Elsevier, Netherlands 1994).

Google Scholar

[98] T. Kotoyori: Critical temperatures for the thermal explosion of chemicals (Elsevier, Netherlands 2005).

Google Scholar

[99] PS. Hess and GA O´Hare: Oxidation of linseed oil - temperature effects. Ind. Eng. Chem. Vol. 7 (1950) pp.1424-1431.

Google Scholar

[100] E. Staufer: A review of the analysis of vegetable oil residues from fire debris samples. J. Forensic Sci. Vol. 50 (2005) pp.27-34.

Google Scholar

[101] TWG. Solomons and CB Fryhle: Organic chemistry (John Wiley & sons, USA 2009).

Google Scholar

[102] A. Baylon, E. Stauffer and O. Delemont: Evaluation of the self-heating tendency of vegetable oils by differential scanning calorimetry. J. Forensic Sci. Vol. 53 (2008).

DOI: 10.1111/j.1556-4029.2008.00871.x

Google Scholar

[103] SJ Tuman: Differential scanning calorimetry study of linseed oil cured with metal catalysts. Progress in Organics Coatings. Vol. 53 (2008).

DOI: 10.1016/0300-9440(95)00605-2

Google Scholar

[104] N. Nimura, N. Kishi and T. Miyakoshi: Structural study of dried linseed film using two-stage pyrolysis-gas chromatography/mass spectroscopy. J. Mass Spectrom. Soc. Jpn. Vol. 51 (2003) pp.229-234.

DOI: 10.5702/massspec.51.229

Google Scholar

[105] C. Boelhouwer, JT. Knegtel and M. Tels: On the mechanism of thermal polymerisation of linseed oil. Fette Seifen Anstrichmittel. Vol. 69 (1967) pp.482-486.

DOI: 10.1002/lipi.19670690611

Google Scholar

[106] M. Ulkowski, M. Musialik, and G. Litwinenko: Use of differential scanning calorimetry to study lipid oxidation. 1. Oxidative stability of lecithin and linoleic acid. J. Agric. Food Chem. Vol. 23 (2005) pp.9073-9077.

DOI: 10.1021/jf051289c

Google Scholar

[107] ASTM 3523-92: 2012: Standard Test Method for Spontaneous Heating Values of Liquids and Solids (Differential Mackey Test).

DOI: 10.1520/d3523-92r07

Google Scholar

[108] SP. Sarathi: In-situ combustion handbook (National Petroleum Technology Office, USA 1999).

Google Scholar

[109] F. Geissmann: Adiabatic reaction caloriemtry in the sedex (Safety laboratory Siegfried, Switzerland 2002).

Google Scholar

[110] V. Mózer, A. Osvald, T. Loveček, A. Fanfarová and Ľ. Vráblová: Fire safety in tunnels forming part of critical infrastructure, in: 47th IEEE International Carnahan Conference on Security Technology (Medelin, Colombia 2013).

DOI: 10.1109/ccst.2013.6922042

Google Scholar

[111] J. Műllerová and M. Mikulík: Technology and safety of biomass combustion (Lambert Academic Publishing, Germany 2012).

Google Scholar