[1]
V. Babrauskas and R.D. Peacock: Heat Release Rate: The Single Most Important Variable in Fire Hazard. Fire Saf. J. Vol. 18 (1992) pp.255-272.
DOI: 10.1016/0379-7112(92)90019-9
Google Scholar
[2]
J. Martinka, T. Chrebet and K. Balog: An assessment of petrol fire risk by oxygen consumption calorimetry. J. Therm. Anal. Calorim. (2014). DOI 10. 1007/s10973-014-3686-6.
DOI: 10.1007/s10973-014-3686-6
Google Scholar
[3]
Q. Xu, A. Majlingová, M. Zachar, C. Jin and Y. Jiang: Correlation analysis of cone calorimetry test data assessment of the procedure with tests of different polymers. J. Therm. Anal. Calorim. Vol. 110 (2012) pp.65-70.
DOI: 10.1007/s10973-011-2059-7
Google Scholar
[4]
Q. Xu, M. Zachar, A. Majlingová, C. Jin and Y. Jiang: Evaluation of plywood fire behaviour by ISO tests. European Journal of Environmental and Safety Sciences. Vol. 1 (2013) pp.1-7.
Google Scholar
[5]
V. Mózer: On equivalent fire exposure. European Journal of Environmental and Safety Sciences. Vol. 1 (2013) pp.18-23.
Google Scholar
[6]
M. Zachar, I. Mitterová, Q. Xu, A. Majlingová, J. Cong and Š. Galla: Determination of Fire and Burning Properties of Spruce Wood. Drv. Ind. Vol. 63 (2012) pp.217-223.
DOI: 10.5552/drind.2012.1141
Google Scholar
[7]
I. Mitterová and M. Zachar: The comparison of flame retardants efficiency when exposed to heat, in: Modern trends in ergonomics and occupational safety, edited by G. Dudarski, J. Martinka, M. Rybakowski and I. Tureková, University of Zielona Góra, Zielona Góra, Poland (2013).
DOI: 10.15557/pimr.2021.0036
Google Scholar
[8]
L. Makovická Osvaldová, A. Osvald and D. Kačíková: Coniferous wood - reaction on fire in forest condition. Am. Int. J. Contemp. Res. Vol. 2 (2012) pp.37-46.
Google Scholar
[9]
A. Osvald and L. Osvaldová: Retardation of spruce wood burning (Technical University in Zvolen, Slovakia 2003).
Google Scholar
[10]
L. Tereňová: Impact of moisture on the ignition temperature of spruce wood, in: Wood and fire safety, edited by A. Osvald, Šmíra Print, Ostrava, Czech Republic (2012).
Google Scholar
[11]
E. Orémusová: Influence of the retardation substances applied by various technological procedures on beech veneers combustion heat, in: Fire engineering, edited by I. Marková, Sabovci Brothers, Zvolen, Slovakia (2002).
Google Scholar
[12]
ISO 871: 2006: Plastics – Determination of ignition temperature using a hot-air furnace.
Google Scholar
[13]
P. Kučera, A. Lokaj and V. Vlček: Behavior of the spruce wood and birch wood from fire safety point of view. Adv. Mater. Res. Vol. 842 (2014) pp.725-728.
DOI: 10.4028/www.scientific.net/amr.842.725
Google Scholar
[14]
P. Kučera, A. Lokaj and D. Kačíková: Assessment of reliability of timber structures elements exposed large-scale fire test. Acta Facultatis Xylologiae. Vol. 54 (2012) pp.95-104.
Google Scholar
[15]
J. Ladomerský: Emission analysis and minimization from the wood waste combustion. Wood Res. Vol. 45 (2000) pp.33-44.
Google Scholar
[16]
J. Ladomerský, E. Hroncová and D. Samešová: Investigation of appropriate conditions for wood wastes combustion on basis of emission. Drew. Vol. 46 (2003) pp.90-98.
Google Scholar
[17]
J. Ladomerský and E. Hroncová: Investigation of wood waste combustion efficiency in burning chamber on basis of emission. Acta. Mech. Slovaca. Vol. 7 (2003) pp.595-600.
Google Scholar
[18]
J. Martinka, D. Kačíková, E. Hroncová and J. Ladomerský: Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions. J. Therm. Anal. Calorim. Vol. 110 (2012) pp.193-198.
DOI: 10.1007/s10973-012-2261-2
Google Scholar
[19]
M. Moravec and P. Liptai: Recycling of screens and monitors, in: VIII Scientific conference for PhD students of faculty of mechanical engineering of technical university of Košice (Technical university of Košice, Slovakia 2009).
DOI: 10.24867/jpe-2021-02-009
Google Scholar
[20]
L. Shi and MIL. Chew: Experimental study of woods under external heat flux by autoignition. J. Therm. Anal. Calorim. Vol. 111 (2012) pp.1399-1407.
DOI: 10.1007/s10973-012-2489-x
Google Scholar
[21]
MA. Delichatsios, TH. Panagiotou and F. Kiley: The use of time to ignition data for characterizing the thermal inertia and the minimum (critical) heat flux for ignition or pyrolysis. Combust. Flame. Vol. 84 (1991) pp.323-332.
DOI: 10.1016/0010-2180(91)90009-z
Google Scholar
[22]
E. Mikkola and IS: Wichman: On the thermal ignition of combustible materials. Fire. Mater. Vol. 14 (1989) pp.87-96.
DOI: 10.1002/fam.810140303
Google Scholar
[23]
T. Harada: Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test. Fire. Mater. Vol. 25 (2001) pp.161-167.
DOI: 10.1002/fam.766
Google Scholar
[24]
V. Babrauskas: Ignition of wood: a review of the state of the art, in: Interflam (Interscience Communications, United Kingdom 2001).
Google Scholar
[25]
M. Buštorová, J. Martinka and I. Tureková: The influence of OSB boards thickness on their induction period of ignition, in: Kolokvium ku grantovým úlohám VEGA, edited by I. Čabalová, Technical University in Zvolen, Zvolen, Slovakia (2011).
Google Scholar
[26]
R. Carvel, T. Steinhaus, G. Rein and JL. Torero: Determination of the flammability properties of polymeric materials: A novel method. Polym. Degrad. Stab. Vol. 96 (2011) pp.314-319.
DOI: 10.1016/j.polymdegradstab.2010.08.010
Google Scholar
[27]
E. Mikkola: Ignitability of solids materials, in: Heat release in fires, edited by V. Babrauskas and SJ: Grayson, Interscience Communications, London, UK (2009).
Google Scholar
[28]
A. Osvald, P. Komárek and Ľ. Hubačková: Evaluation of selected wood species from the perspective of fire protection (Technical University in Zvolen, Slovakia 2007).
Google Scholar
[29]
M. Zachar: Influence of heating on thermal degradation of selected wood species (Technical University in Zvolen, Slovakia 2009).
Google Scholar
[30]
R. Kallonen: Test methods for fire hazards of construction plastics (Technical research centre of Finland, Finland 1988).
Google Scholar
[31]
SV. Glass and SL. Zelinka: Moisture relations and physical properties of wood, in: Wood handbook (Forest Products Laboratory, USA 2010).
Google Scholar
[32]
ZT. Yu, X. Xu, LW. Fan, YC. Hu and KF. Cen: Experimental measurements of thermal conductivity of wood species in china: effects of density, temperature, and moisture content. For. Prod. J. Vol. 61 (2012) pp.130-135.
DOI: 10.13073/0015-7473-61.2.130
Google Scholar
[33]
F. Shafizadeh: The chemistry of pyrolysis and combustion, in: The chemistry of solid wood edited by R. Rowell, American Chemical Society, Washington, USA (1984).
Google Scholar
[34]
D. Fengel and G. Wegener: Wood: chemistry, ultrastructure, reactions (Walter de Gruyter, Germany 1984).
Google Scholar
[35]
L. Dzurenda: Combustion of wood and bark (Technical University in Zvolen, Slovakia 2005).
Google Scholar
[36]
E. Ružinská: The study of thermal characteristics of modified products isolated from kraft black liquor for formulation of new type of adhesive mixtures. Wood Res. Vol. 48 (2003) pp.22-35.
Google Scholar
[37]
E. Ružinská: Recycling wastes from the processing of biomass for the preparation of perspective wood composites. Waste Forum. Vol. 4 (2010) pp.338-345.
Google Scholar
[38]
K. Balog: Autoignition (SPBU, Czech Republic 1999).
Google Scholar
[39]
Q. Jianmin: Prediction of LIFT data from cone calorimeter measurements, in: Heat release in fires, edited by V. Babrauskas and SJ: Grayson, Interscience Communications, London, UK (2009).
Google Scholar
[40]
V. Babrauskas and SJ. Grayson: Heat release in fires (Interscience communications, UK 2009).
Google Scholar
[41]
V. Babrauskas: Ignition handbook (Fire Science Publishers, USA 2003).
Google Scholar
[42]
G. Varga and A. Važanová: Determination of the activation energy by linear heating method, in: VIII Scientific Conference of PhD students and young scientists held under the auspices FPV with international participation (UKF, Slovakia 2007).
Google Scholar
[43]
MJ. Starink: The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta. Vol. 404 (2003) pp.163-176.
DOI: 10.1016/s0040-6031(03)00144-8
Google Scholar
[44]
BA. Howell: The utility of variable temperature techniques in thedetermination of kinetic parameters. Thermochim. Acta. Vol. 388 (2002) pp.275-281.
DOI: 10.1016/s0040-6031(02)00018-7
Google Scholar
[45]
BA. Howell and JA. Ray: Comparison of isothermal and dynamic methods for the determination of activation energy by thermogravimetry. J. Therm. Anal. Calorim. Vol. 83 (2006) pp.63-66.
DOI: 10.1007/s10973-005-7251-1
Google Scholar
[46]
T. Chrebet: Influence of external condition on ignition of wood and materials on the base of wood (Slovak University of Technology in Bratislava, Slovakia 2010).
Google Scholar
[47]
ISO 871: 2006: Plastics - Determination of ignition temperature using a hot-air furnace.
Google Scholar
[48]
T. Kotoyori: Critical ignition temperatures of wood sawdusts. Fire Saf. Sci. Vol. 463 (1985) pp.115-121.
Google Scholar
[49]
T. Hiarata, S. Kawamoto and T. Nishimoto: Thermogravimetry of wood treated with water-insoluble retardants and a proposal for development of wood materials. Fire Mater. Vol. 15 (1991) pp.27-36.
DOI: 10.1002/fam.810150106
Google Scholar
[50]
K. Balog: Study of flaming and nonflaming combustion process of cellulosic materials (VŠCHT, Slovakia 1986).
Google Scholar
[51]
C. Dohare and N. Mehta: J. Alloy. Compd. Vol. 587 (2014) p.565.
Google Scholar
[52]
C. Pacurariu and I. Lazau: J. Non-Cryst. Solids. Vol. 358 (2012) p.3332.
Google Scholar
[53]
Q. Wang, J. Qiang, Y. Wang, J. Xia, H. Huang, D. Wang and C. Dong: J. Non-Cryst. Solids. Vol. 353 (2007) p.3421.
Google Scholar
[54]
S. Srivastava, M. Zulfequar and A. Kumar: Journal of Non-Oxide Glasses. Vol. 2 (2010) p.97.
Google Scholar
[55]
G. Benchabane, Z. Boumerzoug, I. Thibon and T. Gloriant: Mater. Charact. Vol 59 (2008) p.1425.
Google Scholar
[56]
M. Malow and U. Krause: J. Loss. Prevent. Proc. Vol. 17 (2004) p.51.
Google Scholar
[57]
S.M. Pourmortazavi, S.G. Hosseini, M. Rahimi-Nasraubadi, S.S. Hajimirsadeghi and H. Momenian: J. Hazard. Mater. Vol. 162 (2009) p.1141.
Google Scholar
[58]
M. Nasui, T. Petrisor Jr., R.B. Mos, A. Mesaros, R.A. Varga, B.S. Vasile, T. Ristoiu, L. Ciontea and T. Petrisor: J. Anal. Appl. Pyrol. Vol. 106 (2014) p.92.
DOI: 10.1016/j.jaap.2014.01.004
Google Scholar
[59]
S. Boontima, C. Danvirutai and T. Srithanratana: Solid. State. Sci. Vol. 12 (2010) p.1226.
Google Scholar
[60]
L. Tian, N. Ren, J.J. Zhang, H.M. Liu, J.H. Bai, H.M. Ye and S.J. Sun: Inorg. Chim. Acta. Vol. 362 (2009) p.3388.
Google Scholar
[61]
P. Rantuch, D. Kačíková, J. Martinka, K. Balog: Acta Facultatis Xylologiae, Vol. 56 (2014) p.97.
Google Scholar
[62]
M. Rybakowski, G. Dudarski, A. Očkajová and J. Stebila: Adv. Mater. Res. Vol. 805-806 (2013) p.1771.
DOI: 10.4028/www.scientific.net/amr.805-806.1771
Google Scholar
[63]
G. Gai, Y. Dong and T. Zhang: Bioresource Technol. Vol. 127 (2013) p.298.
Google Scholar
[64]
X. Gu, C. Liu, X. Jiang, X. Ma, L. Li, K. Cheng and Z. Li: J. Anal. Appl. Pyrol. Vol. 106 (2014) p.177.
Google Scholar
[65]
MV. Kok and E. Őzgűr: Fuel. Process. Technol. Vol. 106 (2013) p.739.
Google Scholar
[66]
AS. Gundogar and MV. Kok: Fuel. Vol. 123 (2014), p.59.
Google Scholar
[67]
H. Kissinger: J Res Nat. Bur. Stand. 57(1956) p.217.
Google Scholar
[68]
T. Ozawa: J. Therm. Anal. Calorim. Vol. 2 (1970) p.301.
Google Scholar
[69]
P. G. Bosswell: J. Therm. Anal. Calorim. Vol. 18 (1980), p.353.
Google Scholar
[70]
T. Akahira and T. Sunose: Sci. Technol. Vol. 16 (1971) p.22.
Google Scholar
[71]
J. Flynn and L. Wall: J. Polym. Sci. Pol. Lett. Vol. 4 (1966) p.323.
Google Scholar
[72]
T. Ozawa: B. Chem. Soc. Jpn. Vol. 38 (1965) p.1881.
Google Scholar
[73]
ASTM E1641-13: Standard Test Method for Decomposition Kinetics by Thermogravimetry Using the Ozawa/Flynn/Wall Method.
DOI: 10.1520/e1641-13
Google Scholar
[74]
W. Tang, Y. Liu, H. Zhang and C. Wang: Thermochim. Acta. Vol. 408 (2003) p.39.
Google Scholar
[75]
MJ. Starink: Thermochim. Acta. Vol. 288 (1996) p.97.
Google Scholar
[76]
MJ. Starink: Thermochim. Acta Vol. 404 (2003) p.163.
Google Scholar
[77]
MJ. Prins, KJ. Ptasinski and F.J.J.G. Janssen: J. Anal. Appl. Pyrol. Vol. 77 (2006) p.35.
Google Scholar
[78]
A. Demirbas: J. Anal. Appl. Pyrol. Vol. 73 (2005) p.39.
Google Scholar
[79]
M. Nik-Azar, MR. Hajaligol, M. Sohrabi and B. Dabir: Fuel. Process. Technol. Vol. 51 (1977) p.
Google Scholar
[80]
A. Demirbas: J. Anal. Appl. Pyrol. Vol. 72 (2004) p.215.
Google Scholar
[81]
G. Mishra and S. Saka: Bioresource. Technol. Vol. 102 (2011) p.10946.
Google Scholar
[82]
DK. Shen, S. Gu, K.H. Luo, AV. Brighwater and M.X. Fang: Fuel. Vol. 88 (2009) p.1024.
Google Scholar
[83]
Q. Liu, S. R. Wang, M. X. Fang, M. Luo, KF. Cen and WK. Chow: Bench-Scale Studies On Wood Pyrolysis Under Different Environments. Asia-oceania Symphosium on Fire Science and Technology 7, (2007).
Google Scholar
[84]
F. Sliwa, NE. Bounia, G. Martin, F. Charrier and F. Malet: Polym. Degrad. Stabil. Vol. 97 (2012) p.496.
Google Scholar
[85]
C. Branca and C. Di Blasi: Fuel. Vol. 83 (2004) p.81.
Google Scholar
[86]
O. Senneca, R. Chirone and P. Salatino: J. Anal. Appl. Pyrol. Vol. 71 (2004) p.959.
Google Scholar
[87]
CJ. Gómez, E. Mészáros, E. Jakab, E. Velo and L. Puigjaner: J. Anal. Appl. Pyrol. Vol. 80 (2007) p.416.
Google Scholar
[88]
A. Hazarika, M. Mandal and TK. Maji: Compos. Part B-Eng. Vol. 60 (2014) p.568.
Google Scholar
[89]
M. Amutio, G. Lopez, R. Aguado, M. Artetxe, J. Bilbao and M. Olazar: Fuel. Vol. 95 (2012) p.305.
DOI: 10.1016/j.fuel.2011.10.008
Google Scholar
[90]
Y. Elmay, M. Jeguirim, S. Dorge, G. Trouvé and R. Said: Energy. Vol. 44 (2012) p.7.
Google Scholar
[91]
F. Bonnefoy, P. Gilot and G. Prado: J. Anal. Appl. Pyrol. Vol 25 (1993) p.387.
Google Scholar
[92]
A. Kostolanský: Application of Mackey test to evaluation of substances from the perspective of self-ignition tendency. Spravodajca. Vol. 34 (2003) pp.27-29.
Google Scholar
[93]
H. Vežníková: Evaluation of risk of self-heating of solids in mixtures with oxidizable oils. Arops. Vol. 24 (2006) pp.16-23.
Google Scholar
[94]
I. Hrušovský: Investigation of Self-heating and spontaneous ignition of oils (Leibniz Institute for Solid State and Materials Research Dresden, Germany 2013).
Google Scholar
[95]
J. Dehaan: Kirk´s fire investigation (Prentice hall, USA 2002).
Google Scholar
[96]
United Nations Economic Commission for Europe: Recommendations on the transport of dangerous goods (United Nations Economic Commission for Europe, Switzerland 2009).
DOI: 10.18356/1571d99c-en
Google Scholar
[97]
T. Grewer: Thermal hazards of chemical reactions (Elsevier, Netherlands 1994).
Google Scholar
[98]
T. Kotoyori: Critical temperatures for the thermal explosion of chemicals (Elsevier, Netherlands 2005).
Google Scholar
[99]
PS. Hess and GA O´Hare: Oxidation of linseed oil - temperature effects. Ind. Eng. Chem. Vol. 7 (1950) pp.1424-1431.
Google Scholar
[100]
E. Staufer: A review of the analysis of vegetable oil residues from fire debris samples. J. Forensic Sci. Vol. 50 (2005) pp.27-34.
Google Scholar
[101]
TWG. Solomons and CB Fryhle: Organic chemistry (John Wiley & sons, USA 2009).
Google Scholar
[102]
A. Baylon, E. Stauffer and O. Delemont: Evaluation of the self-heating tendency of vegetable oils by differential scanning calorimetry. J. Forensic Sci. Vol. 53 (2008).
DOI: 10.1111/j.1556-4029.2008.00871.x
Google Scholar
[103]
SJ Tuman: Differential scanning calorimetry study of linseed oil cured with metal catalysts. Progress in Organics Coatings. Vol. 53 (2008).
DOI: 10.1016/0300-9440(95)00605-2
Google Scholar
[104]
N. Nimura, N. Kishi and T. Miyakoshi: Structural study of dried linseed film using two-stage pyrolysis-gas chromatography/mass spectroscopy. J. Mass Spectrom. Soc. Jpn. Vol. 51 (2003) pp.229-234.
DOI: 10.5702/massspec.51.229
Google Scholar
[105]
C. Boelhouwer, JT. Knegtel and M. Tels: On the mechanism of thermal polymerisation of linseed oil. Fette Seifen Anstrichmittel. Vol. 69 (1967) pp.482-486.
DOI: 10.1002/lipi.19670690611
Google Scholar
[106]
M. Ulkowski, M. Musialik, and G. Litwinenko: Use of differential scanning calorimetry to study lipid oxidation. 1. Oxidative stability of lecithin and linoleic acid. J. Agric. Food Chem. Vol. 23 (2005) pp.9073-9077.
DOI: 10.1021/jf051289c
Google Scholar
[107]
ASTM 3523-92: 2012: Standard Test Method for Spontaneous Heating Values of Liquids and Solids (Differential Mackey Test).
DOI: 10.1520/d3523-92r07
Google Scholar
[108]
SP. Sarathi: In-situ combustion handbook (National Petroleum Technology Office, USA 1999).
Google Scholar
[109]
F. Geissmann: Adiabatic reaction caloriemtry in the sedex (Safety laboratory Siegfried, Switzerland 2002).
Google Scholar
[110]
V. Mózer, A. Osvald, T. Loveček, A. Fanfarová and Ľ. Vráblová: Fire safety in tunnels forming part of critical infrastructure, in: 47th IEEE International Carnahan Conference on Security Technology (Medelin, Colombia 2013).
DOI: 10.1109/ccst.2013.6922042
Google Scholar
[111]
J. Műllerová and M. Mikulík: Technology and safety of biomass combustion (Lambert Academic Publishing, Germany 2012).
Google Scholar