A Review on the Glass Transition of Polymer on Surface and in the Thin Film

Article Preview

Abstract:

Since the first paper by Keddie et al. published on 1994 [21], the glass transition of polymer systems on surface/thin film has been an active research field and attracted many groups interests. Numerous works have been done, in both experimental and computation approaches, to investigate this subject. In this paper we reviewed the milestone findings in the last twenty years. Generally with only minor disagreements in the mechanism all the mainstream works are consistent in the conclusions that: 1) Geometric confinement in thin film or on surface reduces the glass transition temperature Tg comparing to the bulk behavior; 2) For supported film the substrate-film interaction is critical and its effect may surpass the geometry effects and rise increase on Tg; 3) Chain mobility and molecular weight are critical but the detailed phenomena vary with systems. Notwithstanding the achievement has been made, due to the controversy of glass transition itself and technology limitation on characterization on glass transitions on thin film, the research in this field is still a long-marching effort and breakthrough findings are expected for the development in materials science and engineering and feedback knowledge to understand the glass transition on the theoretical base.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-22

Citation:

Online since:

August 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] The IUPAC Compendium of Chemical Terminology, edited by A. D. McNaught and A. Wilkinson, Blackwell Scientific Publications, Oxford, 66, 583 (1997).

Google Scholar

[2] L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd edition, Part I, Pergamon Press, Oxford (1986)

Google Scholar

[3] D. Ruelle, Physica (Utrecht) 113A, 619 (1982)

Google Scholar

[4] P. G. Debenedetti, Metastable Liquids: Concepts and Principles, Princeton University Press, Princeton, New Jersey (1996)

Google Scholar

[5] M. D. Ediger, C. A. Angell and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996)

Google Scholar

[6] A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994)

Google Scholar

[7] J. H. Gibbs, E.A. DiMarzio, J. Chem. Phys. 28, 373 (1958)

Google Scholar

[8] M. Mézard and G. Parisi, J. Phys.: Condense. Matter 12, 6655 (2000)

Google Scholar

[9] W. Gotze, Liquids, Freezing and the Glass Transition, edited by J. P. Haasma, D. Levesque, and J. Zinn-Justin, North-Holland, Amsterdam, (1991)

Google Scholar

[10] W. Kauzmann, Chem. Rev. 43, 2 (1948)

Google Scholar

[11] G. Adam, J. Gibbs, J. Chem. Phys. 43, 139 (1965)

Google Scholar

[12] K. L. Ngai, Comments Solid State Phys. 9, 127 (1979)

Google Scholar

[13] Tarjus, D. Kivelson, and S. Kivelson, in Supercooled Liquids, Advances and Novel Applications, edited by J. Fourkas, D. Kivelson, U. Mohanty, and K. Nelson, American Chemical Society, Washington, DC, (1996)

DOI: 10.1021/ja985607i

Google Scholar

[14] W. Gӧtze and L. Sjӧgren, Rep. Prog. Phys. 55, 241 (1992)

Google Scholar

[15] S. F. Edwards and T. A. Vilgis, Phys. Scr. T 13, 7 (1986)

Google Scholar

[16] C. Bennemann, C. Donati, J. Baschnagel, and S. Glotzer, Nature (London) 399, 246 (1999)

Google Scholar

[17] K. F. Mansfield, D.N. Theodorou, Macromolecules 24, 6283 (1991)

Google Scholar

[18] C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole and S. C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998)

DOI: 10.1103/physrevlett.80.2338

Google Scholar

[19] C. Donati, S. Glotzer, and P. Poole, Phys. Rev. Lett. 82, 5064 (1999)

Google Scholar

[20] C. Donati, S. Glotzer, P. H. Poole, W. Kob, and S. J. Plimpton, Phys. Rev. E 60, 3107 (1999)

Google Scholar

[21] J. L. Keddie, R. A. L. Jones, R. A. Cory, Europhys. Lett. 27, 59 (1994)

Google Scholar

[22] S. Kinawa, R. A. L. Jones, Phys. Rev. E 63, 021501 (2001)

Google Scholar

[23] J. H. Kim, J. Jang, W. C. Zin, Langmuir 16, 4064 (2000)

Google Scholar

[24] G. B. DeMaggio, W. E. Frieze, D. W. Gidley, M. Zhu, H. A. Hristov, A. F. Yee, Phys. Rev. Lett. 78, 1524 (1997)

Google Scholar

[25] K. Fukao, Y. Miyamoto, Europhys. Lett. 46, 649 (1999)

Google Scholar

[26] J. H. van Zanten, W. E. Wallace, W. Wu, Phys. Rev. E 53, R2053 (1996)

Google Scholar

[27] J. A. Forrest, K. Dalnoki-Veress, J. R. Dutcher, Phys. Rev. E 56, 5705. (1997)

Google Scholar

[28] J. A. Forrest, K. Dalnoki-Veress, J. R. Dutcher, Phys. Rev. E 58, 6109 (1998)

Google Scholar

[29] J. A. Forrest, J. Mattsson, Phys. Rev. E 61, 53 (2000)

Google Scholar

[30] J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens, J. R. Dutcher, Phys. Rev. Lett. 77, 1996 (2002)

Google Scholar

[31] H. Morita, K. Tanaka, T. Kajiyama, T. Nishi, and M. Doi, Macromolecules 39 (18), 6233 (2006)

Google Scholar

[32] J Baschnagel, F Varnik, J. Phys.: Condens. Matter 17, R851 (2005)

Google Scholar

[33] Scheidler, P., Kob, W., Binder, K. Europhys. Lett. 59, 701 (2002)

Google Scholar

[34] Scheidler, P., Kob, W., Binder, K. J. Phys. Chem. B 108, 6673 (2004)

Google Scholar

[35] Smith, G. D., Bedrov, D., Borodin, O. Phys. Rev. Lett. 90, 226103 (2003)

Google Scholar

[36] Varnik, F., Baschnagel, J., Binder, K. Phys. Rev. E 65, 021507 (2002)

Google Scholar

[37] Varnik, F., Baschnagel, J., Binder, K. Euro. Phys. J. E 8, 175 (2002)

Google Scholar

[38] Varnik, F., Baschnagel, J., Binder, K., Mareschal, M. Eur. Phys. J. E 12, 167 (2003)

Google Scholar

[39] C. Bennemann, W. Paul, K. Binder, B. Dünweg, Phys. Rev. E 57, 843 (1998)

Google Scholar

[40] J. A Torres, P. F. Nealey, and J. J. de Pablo, Phys. Rev. Lett. 85, 15 (2000)

Google Scholar

[41] P. Doruker and W. L. Mattice, Macromolecules 31, 1418-1426 (1998)

Google Scholar

[42] G. Xu and W. L. Mattice, J. Chem. Phys. 118, 5241 (2003)

Google Scholar

[43] T. S. Jain and J. J. de Pablo, Macromolecules 35, 2167 (2002)

Google Scholar

[44] K. Huang, Statistical Mechanics, 2nd Edition, John Wiley & Sons Inc. (1987)

Google Scholar

[45] C. A. Angell and K. J. Rao, J. Chem. Phys. 57, 470 (1972)

Google Scholar

[46] T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. B 36, 8552 (1987)

Google Scholar

[47] D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975)

Google Scholar

[48] G. H. Fredrickson and H. C. Andersen, Phys. Rev. Lett. 52, 1244 (1984)

Google Scholar

[49] S. Davatolhagh, D. Dariush, and L. Separdar, Phys. Rev. E 81, 031501 (2010)

Google Scholar

[50] D. Larson, H. G. Katzgraber, M. A. Moore, and A. P. Young, Phys. Rev. B 81, 064415 (2010)

Google Scholar

[51] R. S. Andrist, D. Larson and H. G. Katzgraber, Phys. Rev. E 83, 030106 (2011)

Google Scholar

[52] P. D. Gujrati, K. P. Pelletier, UATP/08-04 (unpublished)

Google Scholar

[53] P. D. Gujrati, Phys. Rev. Lett. 64, 809 (1995)

Google Scholar

[54] F. Semerianov, Ph.D. Dissertation, University of Akron (2004)

Google Scholar

[55] F. Semerianov and P. D. Gujrati, Phys. Rev. E 72, 011102 (2005)

Google Scholar

[56] P. D. Gujrati, arXiv:0708.2075 [cond-mat.soft]

Google Scholar

[57] P. D. Gujrati and M. Chhajer, J. Chem. Phys. 106, 5599 (1997)

Google Scholar

[58] M. Chhajer and P. D. Gujrati, J. Chem. Phys. 106, 8101 (1997)

Google Scholar

[59] M. Chhajer and P. D. Gujrati, J. Chem. Phys. 106, 9799 (1997)

Google Scholar

[60] M. Chhajer and P. D. Gujrati, J. Chem. Phys. 109, 11018 (1998)

Google Scholar

[61] M. Chhajer and P. D. Gujrati, J. Chem. Phys. 115, 4890 (2001)

Google Scholar