Preparation of Conductive Ink with Silver Nanoparticles and Application in Transparent Conductive Films

Article Preview

Abstract:

The silver nanoparticles (Ag NPs) with average diameter of 84nm are synthesized via a simple liquid phase reduction method in the mixture of water and ice. The conductive ink with good performance is formulated using the synthesized Ag NPs and its average sheet resistance reaches to 0.62Ω/□. Furthermore, the grid transparent conductive films (TCFs) with three different geometries are fabricated using the formulated conductive ink through flexographic printing, and the transparent and conductive properties are analyzed and compared, resulting in the comprehensive quality Q of 20um/ 400um hexagon grid (3.79) is relatively the highest.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

32-36

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yunxia Jin, Y. C., Dunying Deng, Chengjie Jiang, Tianke Qi, Donglun Yang, and Fei Xiao: ACS Appl. Mater. Interfaces. 1447-1453 (2014).

Google Scholar

[2] Hu L., Wu H., Cui, Y.: MRS Bull. 760−765 (2011), p.36.

Google Scholar

[3] Darren J. Lipomi, Benjamin C. -K. Tee, Michael Vosgueritchian and Zhenan Bao: Adv. Mater. 1771−1775 (2011), p.23.

DOI: 10.1002/adma.201004426

Google Scholar

[4] Michael Layani and Shlomo Magdassi: Mater. Chem. 15378−15382 (2011), p.21.

Google Scholar

[5] Jingyu Zou, Hin-Lap Yip, Steven K. Hau, Alex K. -Y. Jen: Appl. Phys. Lett. 203301(2010), p.96.

Google Scholar

[6] S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim: Adv. Mater. (Weinheim, Ger. ). 4061(2008).

Google Scholar

[7] G. Eda, Y. Y. Lin, S. Miller, C. W. Chen, W. F. Su, and M. Chhowalla: Appl. Phys. Lett. 233305 (2008), p.92.

Google Scholar

[8] Jong-Su Yu, Gwan Ho Jung, Jeongdai Jo, Jung Su Kim, Jun Woo Kim, Sun-Woo Kwak, Jong-Lam Lee, Inyoung Kim, and Dojin Kim: Solar Energy Materials & Solar Cells. 142-147 (2013).

DOI: 10.1016/j.solmat.2012.10.013

Google Scholar

[9] M.G. Kang, M.S. Kim, J. Kim, L.J. Guo: Advanced Materials. 4408–4413 (2008).

Google Scholar

[10] K. Tvingstedt, O. Inganas: Advanced Materials. 2893–2897 (2007).

Google Scholar

[11] Y. Galagan, J.M. Rubingh, R. Andriessen, C. Fan, P.M. Blom, S. Veenstra, J. Kroon: Solar Energy Materials and Solar Cells. 1339–1343 (2011).

DOI: 10.1016/j.solmat.2010.08.011

Google Scholar

[12] Linda Y.L. Wu a, W.T. Kerk a, C.C. Wong:Thin Solid Films. 427–432 (2013), p.544.

Google Scholar

[13] Mohammad Vaseem, Kil Mok Lee, A-Ra Hong, and Yoon-Bong Hahn: ACS Appl. Mater. Interfaces. 3300−3307 (2012).

Google Scholar

[14] Shlomo Magdassi, Michael Grouchko, Oleg Berezin, Alexander Kamyshny: ACS NANO. 1943-1948 (2010).

DOI: 10.1021/nn901868t

Google Scholar

[15] Lun Li, Jie Sun, Xiaoran Li, Yan Zhang, Zhaoxu Wang, Chunren Wang, Jianwu Dai, Qiangbin Wang: Biomaterials. 1714-1721(2012).

Google Scholar

[16] L. Blankenburg, K. Schultheis, H. Schache, S. Sensfuss, M. Schrodner: Sol. Energy Mater. Sol. Cells. 476-483 (2009).

Google Scholar