Recent Simulation Study on Precise Positioning of Carbon Nanotubes by Dielectrophoresis

Article Preview

Abstract:

Carbon nanotubes (CNTs) have been widely studied for their unique size-dependent electrical, mechanical, and chemical properties. However, CNTs need to be precisely positioned in complex device structures. Dielectrophoresis (DEP) is an effective and practical method for precise assembly of CNTs. In this paper, the researches on simulation of precise positioning of CNTs by DEP are reviewed. Single electrode pairs include those with round, triangle, and rectangular tip shapes and electrode arrays such as comb electrodes are also taken accounted. The moving trajectories of CNTs during DEP from the selected literature are introduced. The effect of floating electrodes on precise manipulation of CNTs is examined as well.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

42-45

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.G. Kwon, S.H. Kim, K.H. Kim, M.C. Kang and H.W. Lee: T. Nonferr. Metal. Soc. China Vol. 21 (2011), p. s117.

Google Scholar

[2] C.L. Chen, V. Agarwal, S. Sonkusale and M.R. Dokmeci: Nanotechnology Vol. 20 (2009), 225302.

Google Scholar

[3] T. Hertel, R. Martel and P. Avouris: J. Phys. Chem. B Vol. 102 (1998), p.910.

Google Scholar

[4] P.L. Mceuen, M.S. Fuhrer and H. Park: IEEE. T. Nanotechnol. Vol. 1 (2002), p.78.

Google Scholar

[5] Y. Kobayashi, H. Nakashima, D. Takagi and Y. Homma: Thin Solid Films Vol. 464 (2004), p.286.

Google Scholar

[6] J.Q. Li, Q. Zhang, D.J. Yang and J.Z. Tian: Carbon Vol. 42 (2004), p.2263.

Google Scholar

[7] K. Xu, Z.L. Dong, X. J Tian, J. Liu and C.D. Wu: Integr. Ferroelectr. Vol. 127 (2011), p.21.

Google Scholar

[8] E. Salonen, E. Terama, I. Vattulainen and M. Karttunen: Eur. Phys. J. E Vol. 18 (2005), p.133.

Google Scholar

[9] J.E. Kim and C.S. Han: Nanotechnology Vol. 16 (2005), p.2245.

Google Scholar

[10] C.S. Han, H.W. Seo, H.W. Lee, S.H. Kim and Y.K. Kwak: Int. J. Precis. Eng. Man. Vol. 7 (2006), p.42.

Google Scholar

[11] Y. Lu, C.X. Chen, L. Yang, Y.F. Zhang: Nanoscale. Res. Lett. Vol. 4 (2009), p.157.

Google Scholar

[12] L. An and C.R. Friedrich: J. Appl. Phys. Vol. 105 (2009), p.074314.

Google Scholar

[13] M. Dimaki and P. Bøggild: Nanotechnology Vol. 15 (2004), p.1095.

Google Scholar

[14] D.D. Xu, A. Subramanian, L.X. Dong and B.J. Nelson: IEEE. T. Nanotechnol. Vol. 8 (2009), p.449.

Google Scholar

[15] S. Golan, D. Elata and U. Dinnar: Sensor. Actuat. A-Phys. Vol. 142 (2008), p.138.

Google Scholar

[16] S. Banerjee, B.E. White, L.M. Huang, B.J. Rego, S. O'Brien and I.P. Herman: J. Vac. Sci. Technol. B Vol. 24 (2006), p.3173.

Google Scholar

[17] S. Banerjee, B. White, L. Huang, B.J. Rego, S. O'Brien and I.P. Herman: Appl. Phys. A Vol. 86 (2007), p.415.

Google Scholar

[18] D.D. Xu, K. Shou and B.J. Nelson: Microelectron. Eng. Vol. 88 (2011), p.2703.

Google Scholar

[19] J. Cao, A. Arun, C. Nyffeler and A.M. Lonescu: Microelectron. Eng. Vol. 88 (2011), p.2463.

Google Scholar