Influence of Al-Content on the Microstructure and Mechanical Properties in ZrAlN Coatings

Article Preview

Abstract:

Zirconium aluminum nitride coatings have been deposited onto Ti-6Al-4V substrates by reactive magnetron sputtering in order to investigate the influence of Al-content on the microstructure and mechanical properties. The morphology and microstructure of the coatings were investigated by field emission scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Nanoindentation and Vicker’s indentation methods were employed to measure the hardness and toughness of the coatings, respectively. The results show that a structure of single cubic phase with twinning is formed at Al content of x ≤ 0.23, and a two-phase structure of hexagonal and cubic phase is formed at Al content of x ≥ 0.47. Hardness and toughness of the Zr1-xAlxN coatings show similar tendency with the increasing of Al-content. Both of them reach the maximum values at x=0.23 and drop to the minimum values at x=0.47, after that, they slightly increase with the increasing Al-content. The enhanced hardness and toughness achieved at x=0.23 is ascribed not only to single cubic phase structure but also to twinning structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

778-783

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.A. Munir and J.B. Holt: J. Mater. Sci, Vol. 22 (1987), p.710.

Google Scholar

[2] M.E. Maryam and Z.A. Munir: J. Am. Ceram. Soc., Vol. 73 (1990), p.2222.

Google Scholar

[3] M.E. Maryam and Z.A. Munir: J. Am. Ceram. Soc., Vol. 73(1990), p.1235.

Google Scholar

[4] J, Musil, P. Karvánková and J. Kasl, Surf. Coat. Technol., Vol. 139 (2001), p.101.

Google Scholar

[5] Q. Yang, D.Y. Seo, L.R. Zhao and X.T. Zeng, Surf. Coat. Technol, Vol. (2004), p.168.

Google Scholar

[6] Y. Makino, M. Mori, S. Miyake, K. Saito and K Asami: Surf. Coat. Technol, Vol. 193 (2005), p.219.

Google Scholar

[7] L. Rogström, L.J.S. Johnson, M.P. Johansson, M. Ahlgren, L. Hultman and M. Odén: Scr. Mater., Vol. 62 (2010), p.739.

DOI: 10.1016/j.scriptamat.2010.01.049

Google Scholar

[8] L. Rogström, L.J.S. Johnson, M.P. Johansson, M. Ahlgren, L. Hultman and M. Odén: Thin Solid Films, Vol. 519 (2010), p.694.

DOI: 10.1016/j.tsf.2010.08.119

Google Scholar

[9] L. Rogström, M.P. Johansson, N. Ghafoor and M. Odén: J. Vac. Sci. Technol., Vol. 30 (2012), p.031504.

Google Scholar

[10] X. Zhang, A. Misra, H. Wang, T.D. Shen, M. Nastasi, T.E. Mitchell J.P. Hirth, R.G. Hoagland, and J.D. Embury: Acta Mater., Vol. 52(2004), p.995.

DOI: 10.1016/j.actamat.2003.10.033

Google Scholar

[11] S. Zhang, D. Sun, Y.Q. Fu and H.J. Du: Surf. Coat. Technol., Vol. 198 (2005), p.2.

Google Scholar

[12] P.K. Mehrotra and D.T. Quinto: J. Vac. Sci. Technol., Vol. 3 (1985) p.2401.

Google Scholar

[13] S.M. Ohr and S.J. Chuang: J. Appl. Phys., Vol. 53 (1982), p.5645.

Google Scholar

[14] X. Zhang: Int. J. Fract., Vol. 152 (2008), p.27.

Google Scholar