[1]
Volpe P(2003). Interactions of zero-frequency and oscillation magnetic fields with biostructures and biosystems, Photochem. Photobiol. Sci., 2: 637-338.
DOI: 10.1039/b212636b
Google Scholar
[2]
Zwirska-KorczalaK(2005). Effect of extremely low frequency electromagnetic fields on cell proliferation in 3T3-L1 predipocytes-an in vitro study.J. Physiol. Pharmacol., 56: 101-108.
Google Scholar
[3]
Prashanth KS, Chouhan TRS, NadigerS(2009). Effect of 50Hz electromagnetic fields on acid phosphatase activity. Afr.J. Biochem. Res., 3: 060-065.
Google Scholar
[4]
Ravera S, Repaci E, MorelliA, Pepe IM, Botter R, Beruto D(2004). Electromagnetic field of extremely low frequency decreased adenylate kinase activity in retinal rod outer segment membranes. Bioelectrochemistry. 63(1-2): 317-320.
DOI: 10.1016/j.bioelechem.2003.10.029
Google Scholar
[5]
Morelli A, Ravera S, Panfoli I. PepeIM(2005). Effect of extremely low frequency electromagneticfields on membrane-associated enzymes. Arch. Biochem. Biophys., 441: 191-198.
DOI: 10.1016/j.abb.2005.07.011
Google Scholar
[6]
Van Dorp R: Applications of 2, 45 GHz microwave irradiation in life sciences. Ph. D. Thesis. AlbasserdamOffsetdrukkerijHaveka BV, (1992).
Google Scholar
[7]
Chou CK, Gui AW: Effects of electromagnetic fi elds on isolated nerve and muscle preparations. IEEE Trans MTT, 1978; 26: 141–47.
Google Scholar
[8]
Boon M, Kok LP: Microwave cookbook of pathology. Coulomb Press Leyden, Leiden, The Netherlands, (1987).
Google Scholar
[9]
Marani E, Bolhuis P, Boon ME: Brain enzyme histochemistry following stabilization by microwave irradiation. Histochem J, 1988; 20: 658–64.
DOI: 10.1007/bf01002734
Google Scholar
[10]
Wang Z, Van Dorp R, Weidema AF, Yepey DL: No evidence foreffects of mild microwave irradiation on electrophysiological and morphologicalproperties of cultured embryonic rat dorsal root ganglion cells. Eur J Morphol, 1991; 29(3): 198–206.
Google Scholar
[11]
Czerska EM, Elson EC, Davis CC et al: Effects of continuous andpulsed 2450 MHz radiation on spontaneous lymphoblastoid transformation of human lymphocytes in vitro. Bioelectromagnetics, 1992; 13(4): 247–59.
DOI: 10.1002/bem.2250130402
Google Scholar
[12]
Kok L, Boon M: Microwave cookbook for microscopists. Art and scienceof visualization, Coloumb press, Leyden, The Netherlands, (1992).
Google Scholar
[13]
Marani E, Feirabend: Future perspectives in microwave applications in life sciences. Microwave Newsletter 11, Eur J Morphol, 1994; 32(2–4): 330–34.
Google Scholar
[14]
Van Dorp R, Marani E, Boon ME: Cell replication rates and processesconcerning antibody production in vitro are not influenced by 2. 45GHz microwaves at physiologically normal temperatures. Methods, 1998; 15(2): 151–52.
DOI: 10.1006/meth.1998.0618
Google Scholar
[15]
Belyaev IY, Shcheglov VS, Ushakov VD: Nonthermal effects of extremely high frequency microwaves on chromatin conformation in cells in vitro – dependence on physical, physiological and genetic factors. IEEE Trans microwave Theory Tech, 2000; 48: 2172–79.
DOI: 10.1109/22.884211
Google Scholar
[16]
Cleary SF: Cellular effects of radio frequency electromagnetic fields. In: Gandhi OP, ed, Biological effects and medical applications of electromagnetic energy. Prentice Hall, Engelwood Cliffs, 1990a; 339–56.
Google Scholar
[17]
Cleary SF: Biological effects of radio frequency electromagnetic fields. In: Gandhi OP, ed, Biological effects and medical applications of electromagnetic energy. Prentice Hall, Engelwood Cliffs, 1990b; 467–77.
Google Scholar
[18]
Dutta SK, Das K, Ghosh B, Blackman CF: Dose dependence of acetylcholinesterase activity in neuroblastoma cells exposed to modulated radio-frequency electromagnetic radiation. Bioelectromagnetics, 1992; 13(4): 317–22.
DOI: 10.1002/bem.2250130407
Google Scholar
[19]
Galvin MJ, Parks DL, McRee DI: Influence of 2. 45 GHz microwave radiation on enzyme activity. Radiat Environ Biophys, 1981; 19: 149–56.
DOI: 10.1007/bf01324231
Google Scholar
[20]
Morelli A, Ravera S, Panfoli I. PepeIM(2005). Effect of extremely low frequency electromagnetic fields on membrane-associated enzymes. Arch. Biochem. Biophys., 441: 191-198.
DOI: 10.1016/j.abb.2005.07.011
Google Scholar
[21]
Parveen M, Kumar S, Singh P(2004). Kinetic analysis of the in vivo inhibition of Liver Arch. Biochem. Biophys., 441: 191-198.
Google Scholar
[22]
Dvir H, Harel M, Bon S, SilmanI(2004). The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix. EMBO J., 23: 4394-4405.
DOI: 10.1038/sj.emboj.7600425
Google Scholar
[23]
Axelsen PH, Harel M, Silman I. SussmanJL(1994). Structure and dynamics of the active site gorge of acetylcholinesterase. Synergistic use of molecular dynamics simulation and X-ray crystallography. Protein Sci., 3: 188-197.
DOI: 10.1002/pro.5560030204
Google Scholar
[24]
Ellman GL, Curtney KD, Andres V, Featherstone RM(1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharm., 7: 88-95.
DOI: 10.1016/0006-2952(61)90145-9
Google Scholar
[25]
Hekmat A, Saboury AA, Divsalar A, KhanmohammadiM(2008). Conformational and structural changes of choline oxidase from Alcaligenes species by changing PH values. Bull. Korean Chem. Soc., 29: 1510-1518.
DOI: 10.5012/bkcs.2008.29.8.1510
Google Scholar
[26]
W. -R. Adey, C. -V. Byus, C. -D. Cain, Second World Congress for Electricity in Biology and Medicine. Bologna, Italy, June 8–13, (1997).
Google Scholar
[27]
H. Mohamed-Ali, H. Kolkenbrock, N. Ulbrich, H. Sorensen, K.D. Kramer, H.J. Merker, Eur. J. Clin. Chem. Clin. Biochem. 32 (1994) 319–326.
Google Scholar
[28]
H. Okano, J. Gmitrov, C. Ohkubo, Bioelectromagnetics 20 (1999) 161–171.
Google Scholar
[29]
S. Xu, N. Tomita, K. Ikeuchi, Y. Ikada, Evid. Based Complement. Alternat. Med. 4(2007) 59–63.
Google Scholar
[30]
C. Eichwald, J. Walleczek, Bioelectromagnetics 17 (1996) 427–435.
Google Scholar
[31]
I. Nair, M.G. Morgan, H.K. Florig, IEEE Eng. Med. Biol. Mag. 8 (1989).
Google Scholar
[32]
E. Ciejka, P. Kleniewska, B. Skibska, A. Goraca, J. Physiol. Pharmacol. 62 (2011)657–661.
Google Scholar
[33]
C.F. Martino, P.R. Castello, PLoS One 6 (2011) e22753.
Google Scholar
[34]
K.U. Schallreuter, S.M. Elwary, N.C. Gibbons, H. Rokos, J.M. Wood, Biochem. Biophys. Res. Commun. 315 (2004) 502–508.
Google Scholar
[35]
B.J. Gaffney, H.M. McConnell, Chem. Phys. Lett. 24 (1974) 310–313.
Google Scholar
[36]
T.S. Tenforde, J. Theor. Biol. 133 (1988) 385–396.
Google Scholar
[37]
S. Ravera, C. Falugi, D. Calzia, I.M. Pepe, I. Panfoli, A. Morelli, Biol. Reprod. 75(2006) 948–953.
DOI: 10.1095/biolreprod.106.051227
Google Scholar
[38]
A. Morelli, S. Ravera, I. Panfoli, I.M. Pepe, Arch. Biochem. Biophys. 441 (2005)191–198.
Google Scholar
[39]
P. Volpe, T. Parasassi, C. Esposito, G. Ravagnan, A.M. Giusti, A. Pasquarelli, T. Eremenko, Bioelectromagnetics 19 (1998) 107–111.
DOI: 10.1002/(sici)1521-186x(1998)19:2<107::aid-bem8>3.0.co;2-5
Google Scholar
[40]
R. Cai, H. Yang, J. He, W. Zhu, J. Mol. Struct. 938 (2009) 15–19.
Google Scholar
[41]
A.S. Ramos, S. Techert, Biophys. J. 89 (2005) 1990–(2003).
Google Scholar
[42]
A. Hildebrandt, R. Blossey, S. Rjasanow, O. Kohlbacher, H.P. Lenhof, Bioinfor-matics 23 (2007) e99–e103.
DOI: 10.1093/bioinformatics/btl312
Google Scholar