Effect of very Low Frequency Electromagnetic Radiation on Acetylcholine Esterase Activity

Article Preview

Abstract:

Acetylcholinesterase (AChE) is the enzyme that controls the acetylcholine (ACh) concentrations in cholinergic synaptic clefts by hydrolyzing ACh to choline and acetate. In this paper, we investigate the effect of very low frequency (VLF) electromagnetic field (EMF) radiation on AChE activity. AChE was exposed to VLF-EMFs with electric field intensity ranged from 0 to 200V/m and exposure time ranged from 0 to 120min. The results demonstrated that the VLF-EMF increased enzyme activity when the intensity ranged from 80V/m to 100V/m as well as exposure time ranged from 60min to 80min. And the AChE activity decreased when the intensity ranged from 120V/m to 140V/m and exposure time ranged from 20min to 120min. Thus, those results are significant in clinical treatments.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

827-836

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Volpe P(2003). Interactions of zero-frequency and oscillation magnetic fields with biostructures and biosystems, Photochem. Photobiol. Sci., 2: 637-338.

DOI: 10.1039/b212636b

Google Scholar

[2] Zwirska-KorczalaK(2005). Effect of extremely low frequency electromagnetic fields on cell proliferation in 3T3-L1 predipocytes-an in vitro study.J. Physiol. Pharmacol., 56: 101-108.

Google Scholar

[3] Prashanth KS, Chouhan TRS, NadigerS(2009). Effect of 50Hz electromagnetic fields on acid phosphatase activity. Afr.J. Biochem. Res., 3: 060-065.

Google Scholar

[4] Ravera S, Repaci E, MorelliA, Pepe IM, Botter R, Beruto D(2004). Electromagnetic field of extremely low frequency decreased adenylate kinase activity in retinal rod outer segment membranes. Bioelectrochemistry. 63(1-2): 317-320.

DOI: 10.1016/j.bioelechem.2003.10.029

Google Scholar

[5] Morelli A, Ravera S, Panfoli I. PepeIM(2005). Effect of extremely low frequency electromagneticfields on membrane-associated enzymes. Arch. Biochem. Biophys., 441: 191-198.

DOI: 10.1016/j.abb.2005.07.011

Google Scholar

[6] Van Dorp R: Applications of 2, 45 GHz microwave irradiation in life sciences. Ph. D. Thesis. AlbasserdamOffsetdrukkerijHaveka BV, (1992).

Google Scholar

[7] Chou CK, Gui AW: Effects of electromagnetic fi elds on isolated nerve and muscle preparations. IEEE Trans MTT, 1978; 26: 141–47.

Google Scholar

[8] Boon M, Kok LP: Microwave cookbook of pathology. Coulomb Press Leyden, Leiden, The Netherlands, (1987).

Google Scholar

[9] Marani E, Bolhuis P, Boon ME: Brain enzyme histochemistry following stabilization by microwave irradiation. Histochem J, 1988; 20: 658–64.

DOI: 10.1007/bf01002734

Google Scholar

[10] Wang Z, Van Dorp R, Weidema AF, Yepey DL: No evidence foreffects of mild microwave irradiation on electrophysiological and morphologicalproperties of cultured embryonic rat dorsal root ganglion cells. Eur J Morphol, 1991; 29(3): 198–206.

Google Scholar

[11] Czerska EM, Elson EC, Davis CC et al: Effects of continuous andpulsed 2450 MHz radiation on spontaneous lymphoblastoid transformation of human lymphocytes in vitro. Bioelectromagnetics, 1992; 13(4): 247–59.

DOI: 10.1002/bem.2250130402

Google Scholar

[12] Kok L, Boon M: Microwave cookbook for microscopists. Art and scienceof visualization, Coloumb press, Leyden, The Netherlands, (1992).

Google Scholar

[13] Marani E, Feirabend: Future perspectives in microwave applications in life sciences. Microwave Newsletter 11, Eur J Morphol, 1994; 32(2–4): 330–34.

Google Scholar

[14] Van Dorp R, Marani E, Boon ME: Cell replication rates and processesconcerning antibody production in vitro are not influenced by 2. 45GHz microwaves at physiologically normal temperatures. Methods, 1998; 15(2): 151–52.

DOI: 10.1006/meth.1998.0618

Google Scholar

[15] Belyaev IY, Shcheglov VS, Ushakov VD: Nonthermal effects of extremely high frequency microwaves on chromatin conformation in cells in vitro – dependence on physical, physiological and genetic factors. IEEE Trans microwave Theory Tech, 2000; 48: 2172–79.

DOI: 10.1109/22.884211

Google Scholar

[16] Cleary SF: Cellular effects of radio frequency electromagnetic fields. In: Gandhi OP, ed, Biological effects and medical applications of electromagnetic energy. Prentice Hall, Engelwood Cliffs, 1990a; 339–56.

Google Scholar

[17] Cleary SF: Biological effects of radio frequency electromagnetic fields. In: Gandhi OP, ed, Biological effects and medical applications of electromagnetic energy. Prentice Hall, Engelwood Cliffs, 1990b; 467–77.

Google Scholar

[18] Dutta SK, Das K, Ghosh B, Blackman CF: Dose dependence of acetylcholinesterase activity in neuroblastoma cells exposed to modulated radio-frequency electromagnetic radiation. Bioelectromagnetics, 1992; 13(4): 317–22.

DOI: 10.1002/bem.2250130407

Google Scholar

[19] Galvin MJ, Parks DL, McRee DI: Influence of 2. 45 GHz microwave radiation on enzyme activity. Radiat Environ Biophys, 1981; 19: 149–56.

DOI: 10.1007/bf01324231

Google Scholar

[20] Morelli A, Ravera S, Panfoli I. PepeIM(2005). Effect of extremely low frequency electromagnetic fields on membrane-associated enzymes. Arch. Biochem. Biophys., 441: 191-198.

DOI: 10.1016/j.abb.2005.07.011

Google Scholar

[21] Parveen M, Kumar S, Singh P(2004). Kinetic analysis of the in vivo inhibition of Liver Arch. Biochem. Biophys., 441: 191-198.

Google Scholar

[22] Dvir H, Harel M, Bon S, SilmanI(2004). The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix. EMBO J., 23: 4394-4405.

DOI: 10.1038/sj.emboj.7600425

Google Scholar

[23] Axelsen PH, Harel M, Silman I. SussmanJL(1994). Structure and dynamics of the active site gorge of acetylcholinesterase. Synergistic use of molecular dynamics simulation and X-ray crystallography. Protein Sci., 3: 188-197.

DOI: 10.1002/pro.5560030204

Google Scholar

[24] Ellman GL, Curtney KD, Andres V, Featherstone RM(1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharm., 7: 88-95.

DOI: 10.1016/0006-2952(61)90145-9

Google Scholar

[25] Hekmat A, Saboury AA, Divsalar A, KhanmohammadiM(2008). Conformational and structural changes of choline oxidase from Alcaligenes species by changing PH values. Bull. Korean Chem. Soc., 29: 1510-1518.

DOI: 10.5012/bkcs.2008.29.8.1510

Google Scholar

[26] W. -R. Adey, C. -V. Byus, C. -D. Cain, Second World Congress for Electricity in Biology and Medicine. Bologna, Italy, June 8–13, (1997).

Google Scholar

[27] H. Mohamed-Ali, H. Kolkenbrock, N. Ulbrich, H. Sorensen, K.D. Kramer, H.J. Merker, Eur. J. Clin. Chem. Clin. Biochem. 32 (1994) 319–326.

Google Scholar

[28] H. Okano, J. Gmitrov, C. Ohkubo, Bioelectromagnetics 20 (1999) 161–171.

Google Scholar

[29] S. Xu, N. Tomita, K. Ikeuchi, Y. Ikada, Evid. Based Complement. Alternat. Med. 4(2007) 59–63.

Google Scholar

[30] C. Eichwald, J. Walleczek, Bioelectromagnetics 17 (1996) 427–435.

Google Scholar

[31] I. Nair, M.G. Morgan, H.K. Florig, IEEE Eng. Med. Biol. Mag. 8 (1989).

Google Scholar

[32] E. Ciejka, P. Kleniewska, B. Skibska, A. Goraca, J. Physiol. Pharmacol. 62 (2011)657–661.

Google Scholar

[33] C.F. Martino, P.R. Castello, PLoS One 6 (2011) e22753.

Google Scholar

[34] K.U. Schallreuter, S.M. Elwary, N.C. Gibbons, H. Rokos, J.M. Wood, Biochem. Biophys. Res. Commun. 315 (2004) 502–508.

Google Scholar

[35] B.J. Gaffney, H.M. McConnell, Chem. Phys. Lett. 24 (1974) 310–313.

Google Scholar

[36] T.S. Tenforde, J. Theor. Biol. 133 (1988) 385–396.

Google Scholar

[37] S. Ravera, C. Falugi, D. Calzia, I.M. Pepe, I. Panfoli, A. Morelli, Biol. Reprod. 75(2006) 948–953.

DOI: 10.1095/biolreprod.106.051227

Google Scholar

[38] A. Morelli, S. Ravera, I. Panfoli, I.M. Pepe, Arch. Biochem. Biophys. 441 (2005)191–198.

Google Scholar

[39] P. Volpe, T. Parasassi, C. Esposito, G. Ravagnan, A.M. Giusti, A. Pasquarelli, T. Eremenko, Bioelectromagnetics 19 (1998) 107–111.

DOI: 10.1002/(sici)1521-186x(1998)19:2<107::aid-bem8>3.0.co;2-5

Google Scholar

[40] R. Cai, H. Yang, J. He, W. Zhu, J. Mol. Struct. 938 (2009) 15–19.

Google Scholar

[41] A.S. Ramos, S. Techert, Biophys. J. 89 (2005) 1990–(2003).

Google Scholar

[42] A. Hildebrandt, R. Blossey, S. Rjasanow, O. Kohlbacher, H.P. Lenhof, Bioinfor-matics 23 (2007) e99–e103.

DOI: 10.1093/bioinformatics/btl312

Google Scholar