Overexpression and Phylogenetic Analysis of a Thermostable α-Glucosidase from Thermus thermophilus

Article Preview

Abstract:

The α-glucosidase gene agl from Thermus thermophilus HB8 was cloned into expression vector pBV220. The phylogenetic trees of α-glucosidases were constructed using Neighbor-Joining (NJ) and Maximum-Parsimony (MP) methods. Evolution analysis indicated the α-glucosidase from T. thermophile HB8 was distant from the other glycoside hydrolases 4 and 31 α-glucosidases. By weakening the mRNA secondary structure and replacing the rare codons for the N-terminal amino acids of the target protein, the expression level of the agl was increased 30-fold. The recombinant AGL was purified by the heat treatment, and had a molecular mass of 61 kDa. The optimal activity was at pH 7.8 and 95°C over a 10 min assay. The purified enzyme was stable over a pH range of 5.4-8.6, and had a 1-h half life at 85°C. Kinetic experiments at 90°C with p-nitrophenyl-α-D-glucoside as substrate gave a Km, and Vmax of 0.072 mM and 400 U/mg. Thus, this report provides an industrial means to produce the recombinant α-glucosidase in E. coli.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

841-848

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Amirul, S.L. Khoo, M.N. Nazalan, M.S. Razip and M.N. Azizan: Folia Microbiologia, Vol. 41, no. 2 (1996), p.165.

DOI: 10.1007/bf02814694

Google Scholar

[2] J.E. Nielsen and T.V. Borchert: Bi˚Chimica et Biophysica Acta, Vol. 1543, no. 2, (2000), p.253.

Google Scholar

[3] K.Y. Wu, S.H. Huang, S. Ding, Y.K. Zhang, G.G. Chen and Z.Q. Liang: Folia Microbiologia Vol. 55, no. 6 (2010), p.582.

Google Scholar

[4] S. Chiba: Bioscience, Biotechnology, and Bi˚Chemistry. Vol. 61, no. 8 (1997), p.1233.

Google Scholar

[5] R. Prodanovic, N. Milosavic, D. Sladic, M. Zlatovic, B. Bozic and T.C. Velickovic: Journal Molecular Catalysis B: Enzymatic Vol. 35, no. 4 (2005), p.142.

Google Scholar

[6] F.A. Lucia, M. Dolores, A.G. De Segura, L. Dolores, A. Miguel and G.A. Patricia: Pr˚Cess Bi˚Chemistry Vol. 42, no. 11 (2007), p.1530.

Google Scholar

[7] K.J. Duan, D.C. Sheu and C.T. Lin: Annals of the New York Academy of Sciences Vol. 750 (1995), p.325.

Google Scholar

[8] L. Viikari, M. Alapuranen, T. Puranen, J. Vehmaanperä and M. Siika-aho: Advances in Bi˚Chemical Engineering/ Biotechnololgy Vol. 108 (2007), p.121.

DOI: 10.1007/10_2007_065

Google Scholar

[9] J. Zhang, M. Siika-aho, T. Puranen, M. Tang, M. Tenkanen and L. Viikari: Biotechnology for Biofuels Vol. 4 (2011), p.12.

DOI: 10.1186/1754-6834-4-12

Google Scholar

[10] N. Kato, S. Suyama, M. Shirokane, M. Kato, T. Kobayashi and N. Tsukagoshi: Applied and Environmental Microbiology Vol. 68, no. 3 (2002), p.1250.

DOI: 10.1128/aem.68.3.1250-1256.2002

Google Scholar

[11] A. Angelov, M. Putyrski and W. Liebl: Journal of Bacteriology Vol. 188, no. 20 (2006), p.7123.

Google Scholar

[12] Y.H. Wang, Y. Jiang, Z.Y. Duan, W.L. Shao and H.Z. Li: Biologia Vol. 64, no. 6 (2009), p.1053.

Google Scholar

[13] A.A. Pantazaki, A.A. Pritsa and D.A. Kyriakidis: Applied Microbiology and Biotechnology Vol. 58, no. 1 (2002), p.1.

Google Scholar

[14] T. Oshima and K. Imahori: International Journal of Systematic Bacteriology Vol. 24, no. 1 (1974), p.102.

Google Scholar

[15] J. Sambrook, E.F. Fritsch and T. Maniatis, in: Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY(1989).

DOI: 10.1002/jobm.19840240107

Google Scholar

[16] U.K. Laemmli: Nature Vol. 227 (1970), p.680.

Google Scholar

[17] M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson and D.G. Higgins: Bioinformatic Vol. 23, no. 21 (2007), p.2947.

DOI: 10.1093/bioinformatics/btm404

Google Scholar

[18] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar: Molecular Biology and Evolution Vol. 28, no. 10 (2011), p.2731.

DOI: 10.1093/molbev/msr121

Google Scholar

[19] J.C. Wilgenbusch and D. Swofford, in: Inferring evolutionary trees with PAUP. Curr. Prot˚C. Bioinformatics, Chaper, 6, (2003).

DOI: 10.1002/0471250953.bi0604s00

Google Scholar

[20] L.Y. Guan, W. Mu, J. Chanpeimont, Q.Y. Wang, H.Z. Wu, J.F. Xiao, W. Lubitz, Y.X. Zhang and Q. Liu: Infection and Immunity Vol. 79, no. 7 (2011), p.2608.

Google Scholar

[21] J.J. Pei and W.L. Shao: Applied Microbiololgy and Biotechnology Vol. 78, no. 1 (2008), p.115.

Google Scholar

[22] M. Zuker: Nucleic Acids Research Vol. 31, no. 13 (2003), p.3406.

Google Scholar