Photoelectrochemical Sensing of Hydrazine Based on Palladium Film Modifying N-Silicon Electrode under Visible Irradiation

Article Preview

Abstract:

In this work, a palladium film has been evaporated on an n-silicon (n-n+-Si) surface and electrochemically activated by cyclic voltammetry (CV) to form a modified silicon photo-electrode. Scanning electron microscope (SEM) and x-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and composition of the modified electrode surface. A new photoelectrochemical (PEC) cell based on the modified electrode was used as sensor for hydrazine determination by photocurrent measurements. The sensor showed good photocurrent responses by adding different concentrations of hydrazine with a good stability. The linear ranges for the detection of hydrazine are 2 to 20 μM with a detection limit of 0.5 μM in pH=7.0 phosphate buffer solution (PBS).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1006-1007)

Pages:

811-814

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhao, M. Zhu, M. Zheng, Y. Tang, Y. Chen, T. Lu, Electrochimica Acta 56 (2011) 4930–4936.

Google Scholar

[2] Khushboo, A. Umar, S.K. Kansal, S.K. Mehta, Sensors and Actuators B 188 (2013) 372–377.

Google Scholar

[3] Y. You, Y. Yang, Z. Yang, J Solid State Electrochem (2013) 17: 701–706.

Google Scholar

[4] S. Plunkett, M.E. Parrish, K.H. Shafer, J.H. Shorter, D.D. Nelson, M.S. Zahniser, Spectrochimica Acta Part A 58 (2002) 2505–2517.

DOI: 10.1016/s1386-1425(02)00068-9

Google Scholar

[5] J.A. Oh, J.H. Park, H.S. Shin, Analytica Chimica Acta 769 (2013) 79–83.

Google Scholar

[6] X. Chen, Y. Xiang, Z. Li, A. Tong, Analytica Chimica Acta 625 (2008) 41-46.

Google Scholar

[7] Y. Tan, J. Yu, J. Gao, Y. Cui, Y. Yang, G. Qian, Dyes and Pigments 99 (2013) 966-971.

Google Scholar

[8] U. Lange, V.M. Mirsky, Electrochimica Acta 56 (2011) 3679–3684.

Google Scholar

[9] T. You, L. Niu, J.Y. Gui, S. Dong, E. Wang, Journal of Pharmaceutical and Biomedical Analysis 19 (1999) 231-237.

Google Scholar

[10] F. Liu, W. Li, F. Li, S. Sun, Environ Monit Assess 185 (2013) 4153–4158.

Google Scholar

[11] H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A.R. Fakhari, M. M Amini, Electrochimica Acta 88 (2013) 301–309.

DOI: 10.1016/j.electacta.2012.10.064

Google Scholar

[12] Z.K. He, B. Fuhrmann, U. Spohn, Analytica Chimica Acta 409 (2000) 83-91.

Google Scholar

[13] H.X. Li, Y.P. Ban, Q. Gao, H.D. Wu, Science of Advanced Materials 4 (2012) 935-940.

Google Scholar

[14] H. Li, Q. Gao, L. Chen, W. Hao, Sensors and Actuators B 173 (2012) 540-546.

Google Scholar

[15] H. Wu, J. Hu, H. Li, H. Li, Sensors and Actuators B 182 (2013) 802-808.

Google Scholar

[16] H. Li, W. Hao, J. Hu, H. Wu, Biosensors and Bioelectronics 47 (2013) 225-230.

Google Scholar

[17] I.G. Casella, M. Contursi, Journal of Electroanalytical Chemistry 692 (2013) 80-86.

Google Scholar