A New Turn-Off Fluorescence Chemosensor for Hydrogen Peroxide Based on Carbazole Derivative in Aqueous Solution

Article Preview

Abstract:

A water-soluble fluorescent probe was described for detecting hydrogen peroxide with the carbazole-derived as fluorophore and boronate moiety as recognition unit. The probe was developed as a turn-off fluorescent chemosensor with fast, high selectivity and sensitivity toward H2O2 over other biological reactive oxygen species. What is more, the probe was quenched linear response to H2O2 concentration in the range of 1.0×108 - 2.0×10−5 M and lower detection limit down to 6 nM (S / N = 3) was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1006-1007)

Pages:

821-825

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Thompson Science, 256(1992): 1157-1165.

Google Scholar

[3] H. Ohshima, M. Tatemichi, T. Sawa. Arch Biochem Biophys, 417(2003): 3-11.

Google Scholar

[4] M. P. Mattson. Nature, 430(2004): 631-639.

Google Scholar

[5] J. P. Fruehauf, F. L. Meyskens. Cancer Res., 13(2007): 789-794.

Google Scholar

[6] M. Xu, B. R. Bunes, L. Zang. ACS Appl. Mater. Interfaces, 3(2011): 642-647.

Google Scholar

[7] H. W. Lin, K. S. Suslick. J. Am. Chem. Soc., 132(2010): 15519-15521.

Google Scholar

[8] N. V. Klassen, D. Marchington, H. C. E. McGowan. Anal. Chem., 66(1994): 2921-2925.

Google Scholar

[9] P. X. Yuan, Y. Zhuo, Y. Q. Chai, et al. Electroanalysis, 20(2008): 1839-1844.

Google Scholar

[10] W. Z. Jia, M. Guo, Z. Zheng, et al. Electroanalysis, 20(2008): 2153-2157.

Google Scholar

[11] S. Oszwałdowski, R. Lipka, M. Jarosz. Anal. Chim. Acta, 421(2000): 35-43.

Google Scholar

[12] G. Shan, S. Zheng, S. Chen, et al. Colloids Surf. B, 102(2013): 327-330.

Google Scholar

[13] O. Woleis, A. D¨urkop, M. Wu, et al. Angew. Chem. Int. Ed., 41(2002): 4495-4498.

Google Scholar

[14] X. H. Shu, Y. Chen, H. Y. Yuan, et al. Anal. Chem., 79(2007): 3695-3702.

Google Scholar

[15] A. R. G. C. Lippert, V. D. Bittner, C. Chang. J. Acc. Chem. Res., 44(2011): 793-804.

Google Scholar

[16] Y. Hitomi, T. Takeyasu, T. Funabiki, et al. Anal. Chem., 83(2011): 9213-9216.

Google Scholar

[17] X. L. Sun, S. Y. Xu, S. E. Flower. Chem. Commun., 49(2013): 8311-8313.

Google Scholar

[18] F. B. Yu, P. Li, P. Song, et al. Chem. Commun., 48(2012): 4980-4982.

Google Scholar

[19] B. C. Dickinson, C. J. Chang. J. Am. Chem. Soc., 130(2008): 9638-9639.

Google Scholar

[20] B. D'Autréaux, M. B. Toledano. Nat. Rev. Mol. Cell Biol., 8(2007): 813-824.

Google Scholar

[21] J. Xu, Q. Li, Y. Yue, et al. Biosensors and Bioelectronics, 56(2014): 58-63.

Google Scholar

[22] Y. Y. Qian, L. Xue, D. X. Hu, et al. Dyes and Pigments, 95(2012): 373-376.

Google Scholar

[23] F. Hu, Y. Y. Huang, G. X. Zhang, et al. Tetrahedron Letters 55: (2014) 1471-1474.

Google Scholar

[24] Y. M. Shen, J. Zhao, L. Li, et al. Guan Zhou Chemical Industry, 42(2014): 47-48 (In Chinese).

Google Scholar