[1]
Franklin, K.A., Light and temperature signal crosstalk in plant development. Current Opinion in Plant Biology, 2009. 12(1): pp.63-68.
DOI: 10.1016/j.pbi.2008.09.007
Google Scholar
[2]
Heggie, L. and K.J. Halliday, The highs and lows of plant life: temperature and light interactions in development. The International Journal of Developmental Biology, 2005. 49(5-6): pp.675-687.
DOI: 10.1387/ijdb.041926lh
Google Scholar
[3]
Jiao, Y., O.S. Lau, and X.W. Deng, Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics, 2007. 8(3): pp.217-230.
DOI: 10.1038/nrg2049
Google Scholar
[4]
Zinn, K.E., M. Tunc-Ozdemir, and J.F. Harper, Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 2010. 61(7): p.1959-(1968).
DOI: 10.1093/jxb/erq053
Google Scholar
[5]
Qu, A. -L., et al., Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications, 2013. 432(2): pp.203-207.
DOI: 10.1016/j.bbrc.2013.01.104
Google Scholar
[6]
LOVEYS, B.R., et al., Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast- and slow-growing plant species Plan, Cell and Envrionment, 2002. 25: pp.975-987.
DOI: 10.1046/j.1365-3040.2002.00879.x
Google Scholar
[7]
Song, Y.H., S. Ito, and T. Imaizumi, Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends in Plant Science, 2013. 18(10): pp.575-583.
DOI: 10.1016/j.tplants.2013.05.003
Google Scholar
[8]
Joseph, M.P., et al., The Arabidopsis Zinc Finger Protein 3 interferes with ABA and light signaling in seed germination and plant development. Plant Physiology, (2014).
DOI: 10.1104/pp.113.234294
Google Scholar
[9]
Nemhauser, J.L., T.C. Mockler, and J. Chory, Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis. PLoS Biology, 2004. 2(9): p. e258.
DOI: 10.1371/journal.pbio.0020258
Google Scholar
[10]
Liu, X., et al., Light-Regulated Hypocotyl Elongation Involves Proteasome-Dependent Degradation of the Microtubule Regulatory Protein WDL3 in Arabidopsis. The Plant Cell, 2013. 25(5): pp.1740-1755.
DOI: 10.1105/tpc.113.112789
Google Scholar
[11]
Higuchi, Y., et al., Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. Journal of Plant Physiology, 2012. 169(18): pp.1789-1796.
DOI: 10.1016/j.jplph.2012.07.003
Google Scholar
[12]
Huang, S.J., et al., A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana. Journal of Experimental Botany, 2013. 64(14): pp.4343-4360.
DOI: 10.1093/jxb/ert241
Google Scholar
[13]
Gupta, N., V.B.R. Prasad, and S. Chattopadhyay, LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants. BMC Plant Biology 2014. 14: 38.
DOI: 10.1186/1471-2229-14-38
Google Scholar
[14]
Huang, X., et al., Arabidopsis FHY3 and HY5 Positively Mediate Induction of COP1 Transcription in Response to Photomorphogenic UV-B Light. The Plant Cell, 2012. 24(11): pp.4590-4606.
DOI: 10.1105/tpc.112.103994
Google Scholar
[15]
LaxmI, A., et al., Light Plays an Essential Role in Intracellular Distribution of Auxin Efflux Carrier PIN2 in Arabidopsis thaliana. PLOS ONE, 2008(1).
DOI: 10.1371/journal.pone.0001510
Google Scholar
[16]
Bours, R., et al., Antiphase Light and Temperature Cycles Affect PHYTOCHROME B-Controlled Ethylene Sensitivity and Biosynthesis, Limiting Leaf Movement and Growth of Arabidopsis. Plant Physiology, 2013. 163(2): pp.882-895.
DOI: 10.1104/pp.113.221648
Google Scholar
[17]
Halliday, K.J., J.F. Martinez-Garcia, and E.M. Josse, Integration of Light and Auxin Signaling. Cold Spring Harbor Perspectives in Biology, 2009. 1(6): p. a001586-a001586.
DOI: 10.1101/cshperspect.a001586
Google Scholar
[18]
Liang, X., et al., Involvement of COP1 in ethylene- and light-regulated hypocotyl elongation. Planta, 2012. 236(6): pp.1791-1802.
DOI: 10.1007/s00425-012-1730-y
Google Scholar