Brewing Spent Diatomite as Adsorbents for Cu2+ Removal from Aqueous Solution

Article Preview

Abstract:

Brewing spent diatomite (BSDT), a beer industrial by-product, was used for the adsorptive removal of copper ions from an aqueous solution. The results show that The removal rate of Cu2+ decreased from 67.2% to 2.8% with decreasing initial pH from 6 to 2; the adsorption capacity decreased proportionally with an increasing amount of BSDT-800, but the removal efficiency of Cu2+ increased with an increasing amount of adsorbent; the adsorption uptake at equilibrium (qe) increases from 9.9 mg/g to 34.1 mg/g with increasing initial concentration from 10 mg/L to 50 mg/L at 293K; the adsorption process of Cu2+ onto BSDT-800 can be described by second-order reaction kinetics.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1010-1012)

Pages:

523-527

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156 (2010) 2 – 10.

Google Scholar

[2] S. Babel, T. A. Kurniawan, J. Hazard. Mater. 97 (2003) 219 – 243.

Google Scholar

[3] Y. H. Wang, S. H. Lin, R. S. Juang, J. Hazard. Mater. 102 (2003) 291 – 302.

Google Scholar

[4] Z. Korunic, Diatomaceous earths, J. Stored Prod. Res. 34 (1998) 87 – 97.

Google Scholar

[5] S. J. Allen, B. Koumanova, Journal of the University of Chemical Technology and Metallurgy 40 (2005) 175–192.

Google Scholar

[6] M. A. Al-Ghouti, M. A. M. Khraisheh, M. Tutuji, Chem. Eng. J. 104 (2004) 83–91.

Google Scholar

[7] A. R. Kul, N. Caliskan, Adsorpt. Sci. Technol. 27 (2009) 85–105.

Google Scholar

[8] M. Šljivića, I. Smičiklasa, S. Pejanovićb, I. Plećaša, Appl. Clay Sci. 43 (2009) 33–40.

Google Scholar

[9] M. A. M. Khraisheh, Y. S. Al-Degs, W. A. M. Mcminn, Chem. Eng. J. 99 (2004) 177–184.

Google Scholar

[10] N. Caliskan, A. R. Kul, S. Alkan, et al, J. Hazard. Mater. 193 (2011) 27–36.

Google Scholar

[11] M. A. Al-Ghouti, M. A. M. Khraisheh, M. N. M. Ahmad, S. Allen J. Hazard. Mater. 165 (2009) 589–598.

Google Scholar

[12] A. B. Albadarina, C. Mangwandia, A.H. Al-Muh, Chem. Eng. J. 179 (2012) 193–202.

Google Scholar

[13] A. Rathinam, B. Maharshi, S. K. Janardhanan, R. R. Jonnalagadda, B. U. Nair, Bioresource Technol. 101 (2010) 1466–1470.

DOI: 10.1016/j.biortech.2009.08.008

Google Scholar

[14] K. Anupam, S. Dutta, C. Bhattacharjee, S. Datta, Chem. Eng. J. 173 (2011) 135–143.

Google Scholar

[15] M. Uysal, I. Ar, J. Hazard. Mater. 149 (2007) 482–491.

Google Scholar

[16] R. I. Yousefa, B. El-Eswedb, A. H. Al-Muhtasebc, Chem. Eng. J. 171 (2011) 1143–1149.

Google Scholar

[17] M. Jiang, Q. Wang, X. Jin, Z. Chen, J. Hazard. Mater. 170 (2009) 332–339.

Google Scholar