[1]
ISO/TS 27687. 2008, 2008. Nanotechnologies – Terminology and Definitions for Nano-objects – Nanoparticle, Nanofibre and Nanoplate, first ed.
DOI: 10.3403/30199918u
Google Scholar
[2]
K. Tiede, A.B.A. Boxall, S.P. Tear, J. Lewis, H. David, M. Hassellov, Detection and characterization of engineered nanoparticles in food and the environment, Food Addit. Contam. 25 (2008) 795–821.
DOI: 10.1080/02652030802007553
Google Scholar
[3]
R.D. Handy, B.J. Shaw, Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology, Health Risk Soc. 9 (2007) 125-144.
DOI: 10.1080/13698570701306807
Google Scholar
[4]
F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Enriron. Sci. Technol. 43 (2009) 9216-9222.
DOI: 10.1021/es9015553
Google Scholar
[5]
B. Chefetz, A.P. Deshmukh, P.G. Hatcher, Pyrene sorption by natural organic matter, Enriron. Sci. Technol. 34 (2000) 2925-2930.
DOI: 10.1021/es9912877
Google Scholar
[6]
H. Choi, M.Y. Corapcioglu, Effect of colloids on volatile contaminant transport and air–water partitioning in unsaturated porous media, Water Resour. Res. 33 (1997a) 2447–2457.
DOI: 10.1029/97wr02229
Google Scholar
[7]
T. Hofmann, A. Wendelborn, Colloid facilitated transport of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to the groundwater at Ma Da area, Vietnam, Environ. Sci. Pollut. R. 14 (2007) 223–224.
DOI: 10.1065/espr2007.02.389
Google Scholar
[8]
Y.P. Chin, P.M. Gschwend, Partitioning of polycyclic aromatic-hydrocarbons to marine porewater organic colloids, Environ. Sci. Technol. 26 (1992) 1621–1626.
DOI: 10.1021/es00032a020
Google Scholar
[9]
M. Laegdsmand, L.W. De Jonge, P. Moldrup, K. Keiding, Pyrene sorption to water-dispersible colloids: effect of solution chemistry and organic matter, Vadose Zone J. 3 (2004) 451–461.
DOI: 10.2113/3.2.451
Google Scholar
[10]
A.A. MacKay, P.M. Gschwend, Enhanced concentrations of PAHs in groundwater at a coal tar site, Environ. Sci. Technol. 35 (2001) 1320–1328.
DOI: 10.1021/es0014786
Google Scholar
[11]
A. Prechtel, P. Knabner, E. Schneid, K.U. Totsche, Simulation of carrierfacilitated transport of phenanthrene in a layered soil profile, J. Contam. Hydrol. 56 (2002) 209–225.
DOI: 10.1016/s0169-7722(01)00211-x
Google Scholar
[12]
K.U. Totsche, S. Jann, I. Kogel-Knabner, Release of polycyclic aromatic hydrocarbons, dissolved organic carbon, and suspended matter from disturbed NAPL-contaminated gravelly soil material, Vadose Zone J. 5 (2006) 469–479.
DOI: 10.2136/vzj2005.0057
Google Scholar
[13]
K.U. Totsche, S. Jann, I. Kogel-Knabner, Single event-driven export of polycyclic aromatic hydrocarbons and suspended matter from coal tar-contaminated soil, Vadose Zone J. 6 (2007) 233–243.
DOI: 10.2136/vzj2006.0083
Google Scholar
[14]
H. Choi, M.Y. Corapcioglu, Transport of a non-volatile contaminant in unsaturated porous media in the presence of colloids, J. Contam. Hydrol. 25 (1997b) 299–324.
DOI: 10.1016/s0169-7722(96)00040-x
Google Scholar
[15]
C.G. Enfield, G. Bengtsson, Macromolecular transport of hydrophobic contaminants in aqueous environments, Ground Water 26 (1988) 64.
DOI: 10.1111/j.1745-6584.1988.tb00368.x
Google Scholar
[16]
T.K. Sen, K.C. Khilar, Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media, Adv. Colloid Interfac. 119 (2006) 71–96.
DOI: 10.1016/j.cis.2005.09.001
Google Scholar
[17]
L.W. De Jonge, C. Kjaergaard, P. Moldrup, Colloids and colloid-facilitated transport of contaminants in soils: an introduction, Vadose Zone J. 3 (2004) 321.
DOI: 10.2113/3.2.321
Google Scholar
[18]
D. Grolimund, M. Borkovec, K. Barmettler, H. Sticher, Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study, Environ. Sci. Technol. 30 (1996) 3118–3123.
DOI: 10.1021/es960246x
Google Scholar
[19]
O. Gustafsson, P.M. Gschwend, Aquatic colloids: concepts, definitions, and current challenges, Limnol. Oceanogr. 42 (1997a) 519.
DOI: 10.4319/lo.1997.42.3.0519
Google Scholar
[20]
J.F. McCarthy, J.M. Zachara, Subsurface transport of contaminants: mobile colloids in the subsurface environment may alter the transport of contaminants, Environ. Sci. Technol. 23 (1989) 496.
DOI: 10.1021/es00063a001
Google Scholar
[21]
Y. Ouyang, D. Shinde, R.S. Mansell, W. Harris, Colloid-enhanced transport of chemicals in subsurface environments: a review, Crit. Rev. Env. Sci. Tec. 26 (1996) 189–204.
DOI: 10.1080/10643389609388490
Google Scholar
[22]
J.N. Ryan, M. Elimelech, Colloid mobilization and transport in groundwater, Colloid Surface A 107 (1996) 1–56.
Google Scholar
[23]
J.E. Saiers, J.N. Ryan, Introduction to special section on colloid transport in subsurface environments, Water Resour. Res. 42 (2006).
DOI: 10.1029/2006wr005620
Google Scholar
[24]
M.R. Wiesner, G.V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials, Environ. Sci. Technol. 40 (2006) 4336-4345.
DOI: 10.1021/es062726m
Google Scholar
[25]
M.A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Perez-Rivera, K. Hristovski, Titanium nanomaterial removal and release from wastewater treatment plants, Environ. Sci. Technol. 43 (2009) 6757-6763.
DOI: 10.1021/es901102n
Google Scholar
[26]
USEPA, 2007. Nanotechnology White Paper. Prepared for the U.S. Environmental Protection Agency by Members of the Nanotechnology Workgroup, a Group of EPA's Science Policy Council Science Policy Council. U.S. Environmental Protection Agency, Washington, DC.
Google Scholar
[27]
M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
DOI: 10.1021/cr00033a004
Google Scholar
[28]
M.G. Antoniou, P.A. Nicolaou, J.A. Shoemaker, A.A. De La Cruz, D.D. Dionysiou, Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR, Appl. Catal. B-Environ. 91 (2009).
DOI: 10.1016/j.apcatb.2009.05.020
Google Scholar
[29]
X. Quan, X. Zhao, S. Chen, H.M. Zhao, J.W. Chen, Y.Z. Zhao, Enhancement of p, p'-DDT photodegradation on soil surfaces using TiO2 induced by UV-light, Chemosphere 60 (2005) 266-273.
DOI: 10.1016/j.chemosphere.2004.11.044
Google Scholar
[30]
J. Fang, X. Shan, B. Wen, J. Lin, G. Owens, Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environ. Pollut. 157 (2009) 1101-1109.
DOI: 10.1016/j.envpol.2008.11.006
Google Scholar
[31]
D.P. Jaisi, N.B. Saleh, R.E. Blake, M. Elimelech, Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility, Environ. Sci. Technol. 42 (2008) 8317-8323.
DOI: 10.1021/es801641v
Google Scholar
[32]
I.G. Godinez, C.J.G. Darnault, Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity, Water Res. 45 (2011) 839-851.
DOI: 10.1016/j.watres.2010.09.013
Google Scholar
[33]
I. Chowdhury, Y. Hong, R.J. Honda, S.L. Walker, Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate, J. Colloid Interf. Sci. 360 (2011) 548-555.
DOI: 10.1016/j.jcis.2011.04.111
Google Scholar
[34]
C.S. Hirtzel, R. Rajagopalan, Colloidal Phenomena: Advanced Topics, Noyes Publications, New Jersey, (1985).
Google Scholar
[35]
R. Kretzschmar, H. Sticher, Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca2+ and trace metals, Environ. Sci. Technol. 31 (1997) 3497-3504.
DOI: 10.1021/es970244s
Google Scholar
[36]
N. Saleh, H.J. Kim, T. Phenrat, K. Matyjaszewski, R.D. Tilton, G.V. Lowry, Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns, Environ. Sci. Technol. 42 (2008) 3349-3355.
DOI: 10.1021/es071936b
Google Scholar
[37]
K.A.D. Guzman, M.P. Finnegan, J.F. Banfield, Influence of surface potential on aggregation and transport of titania nanoparticles, Environ. Sci. Technol. 40 (2006) 7688-7693.
DOI: 10.1021/es060847g
Google Scholar
[38]
R.A. French, A.R. Jacobson, B. Kim, S.L. Isley, R.L. Penn, P.C. Baveye, Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles, Environ. Sci. Technol. 43 (2009) 1354-1359.
DOI: 10.1021/es802628n
Google Scholar
[39]
K.L. Chen, M. Elimelech, Influence of humic acid on the aggregation kinetics of fullerenes (C60) nanoparticles in monovalent and divalent electrolyte solutions, J. Colloid Interf. Sci. 309 (2007) 126-134.
DOI: 10.1016/j.jcis.2007.01.074
Google Scholar
[40]
B. Espinasse, E.M. Hotze, M.R. Wiesner, Transport and retention of colloidal aggregates of C-60 in porous media: effects of organic macromolecules, ionic composition, and preparation method, Environ. Sci. Technol. 41 (2007) 7396-7402.
DOI: 10.1021/es0708767
Google Scholar
[41]
E. Navarro, A. Baun, R. Behra, N.B. Hartmann, J. Filser, A. J. Miao, A. Quigg, P.H. Santschi, L. Sigg, Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi, Ecotoxicology 17 (2008) 372-386.
DOI: 10.1007/s10646-008-0214-0
Google Scholar
[42]
A. Franchi, C.R. O'Melia, Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media, Environ. Sci. Technol. 37 (2003) 1122-1129.
DOI: 10.1021/es015566h
Google Scholar
[43]
S.E. Mylon, K.L. Chen, M. Elimelech, Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries, Langmuir 20 (2004) 9000-9006.
DOI: 10.1021/la049153g
Google Scholar
[44]
K.L. Chen, S.E. Mylon, M. Elimelech, Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes, Environ. Sci. Technol. 40 (2006) 1516-1523.
DOI: 10.1021/es0518068
Google Scholar
[45]
A.J. Pelley, N. Tufenkji, Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media, J. Colloid Interf. Sci. 321 (2008) 74-83.
DOI: 10.1016/j.jcis.2008.01.046
Google Scholar
[46]
A. Amirbahman, T.M. Olson, Deposition kinetics of humic matter-coated hematite in porous-media in the presence of Ca2+, Colloid Surface A 99 (1995) 1-10.
DOI: 10.1016/0927-7757(95)03134-y
Google Scholar
[47]
R.A. Akbour, J. Douch, M. Hamdani, P. Schmitz, Transport of kaolinite colloids through quartz sand: influence of humic acid, Ca2+ and trace metals. J. Colloid Interf. Sci. 253 (2002) 1-8.
DOI: 10.1006/jcis.2002.8523
Google Scholar
[48]
S.R. Deshiikan, E. Eschenazi, K.D. Papadopoulos, Transport of colloids through porous beds in the presence of natural organic matter, Colloid Surface A 145 (1998) 93-100.
DOI: 10.1016/s0927-7757(98)00666-9
Google Scholar
[49]
W.P. Johnson, B.E. Logan, Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter, Water Res. 30 (1996) 923-931.
DOI: 10.1016/0043-1354(95)00225-1
Google Scholar
[50]
A. Tiraferri, R. Sethi, Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum, J. Nanopart. Res. 11 (2009) 635-645.
DOI: 10.1007/s11051-008-9405-0
Google Scholar
[51]
D. Lin, N. Liu, K. Yang, B. Xing, F. Wu, Different stabilities of multiwalled carbon nanotubes in fresh surface water samples, Environ. Pollut. 158 (2010) 1270-1274.
DOI: 10.1016/j.envpol.2010.01.020
Google Scholar
[52]
Y. Tian, B. Gao, C. Silvera-Batista, K.J. Ziegler, Transport of engineered nanoparticles in saturated porous media, J. Nanopar. Res. 12 (2010) 2371-2380.
DOI: 10.1007/s11051-010-9912-7
Google Scholar
[53]
D.G. Brown, P.R. Jaffe, Effects of nonionic surfactants on bacterial transport through porous media, Environ. Sci. Technol. 35 (2001) 3877-3883.
DOI: 10.1021/es010577w
Google Scholar
[54]
M. Abu-Zreig, R.P. Rudra, W.T. Dickinson, Effect of application of surfactants on hydraulic properties of soils, Biosyst. Eng. 84 (2003) 363-372.
DOI: 10.1016/s1537-5110(02)00244-1
Google Scholar
[55]
A. Wiel-Shafran, Z. Ronen, N. Weisbrod, E. Adar, A. Gross, Potential changes in soil properties following irrigation with surfactant-rich greywater, Ecol. Eng. 26 (2006) 348-354.
DOI: 10.1016/j.ecoleng.2005.12.008
Google Scholar
[56]
M.D. Mingorance, J.F. Fernandez Galvez, A. Pena, E. Barahona, Laboratory methodology to approach soil water transport in the presence of surfactants, Colloid Surface A 302 (2007) 75-82.
Google Scholar
[57]
N.H. Tkachenko, Z.M. Yaremko, C. Bellmann, M.M. Soltys, The influence of ionic and nonionic surfactants on aggregative stability and electrical surface properties of aqueous suspensions of titanium dioxide, J. Colloid Interf. Sci. 299 (2006).
DOI: 10.1016/j.jcis.2006.03.008
Google Scholar
[58]
J.M. Pettibone, D.M. Cwiertny, M. Scherer, V.H. Grassian, Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation, Langmuir 24 (2008) 6659-6667.
DOI: 10.1021/la7039916
Google Scholar
[59]
Y. Zhang, Y. Chen, P. Westerhoff, K. Hristovski, J.C. Crittenden, Stability of commercial metal oxide nanoparticles in water, Water Res. 42 (2008) 2204-2212.
DOI: 10.1016/j.watres.2007.11.036
Google Scholar
[60]
K. Nelson, T. Ginn, New collector efficiency equation for colloid filtration in both natural and engineered flow conditions, Water Resour. Res. 47 (2011).
DOI: 10.1029/2010wr009587
Google Scholar
[61]
T.K. Sen, S.P. Mahajan, K.C. Khilar, Colloid-associated contaminant transport in porous media: 1. experimental studies, AIChE J. 48 (2002) 2366-2374.
DOI: 10.1002/aic.690481026
Google Scholar
[62]
J.E. Saiers, Laboratory observations and mathematical modeling of colloid-facilitated contaminant transport in chemically heterogeneous systems, Water Resour. Res. 38 (2002) 1032.
DOI: 10.1029/2001wr000320
Google Scholar
[63]
P.M. Huang, J.M. Bollag, N. Senesi, Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem, John Wiley & Sons, Chichester, (2002).
DOI: 10.1515/ci.2002.24.4.26a
Google Scholar
[64]
B.D. Honeyman, Geochemistry: colloidal culprits in contamination, Nature 397 (1999) 23-24.
DOI: 10.1038/16150
Google Scholar
[65]
A.B. Kersting, D.W. Efurd, D.L. Finnegan, D.J. Rokop, D.K. Smith, J.L. Thompson, Migration of plutonium in ground water at the Nevada Test Site, Nature 397 (1999) 56-59.
DOI: 10.1038/16231
Google Scholar
[66]
J.F. McCarthy, J.M. Zachara, Subsurface transport of contaminants-mobile colloids in the subsurface environment may alter the transport of contaminants, Environ. Sci. Technol. 23 (1989) 496-502.
DOI: 10.1021/es00063a001
Google Scholar
[67]
D. Grolimund, M. Borkovec, K. Barmettler, H. Sticher, Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study, Environ. Sci. Technol. 30 (1996) 3118-3123.
DOI: 10.1021/es960246x
Google Scholar
[68]
X. Wang, J. Lu, M. Xu, B. Xing, Sorption of pyrene by regular and nanoscaled metal oxide particles: influence of adsorbed organic matter, Environ. Sci. Technol. 42 (2008) 7267-7272.
DOI: 10.1021/es8015414
Google Scholar
[69]
K. Yang, B. Xing, Sorption of phenanthrene by humic acid-coated nanosized TiO2 and ZnO, Environ. Sci. Technol. 43 (2009) 1845-1851.
DOI: 10.1021/es802880m
Google Scholar
[70]
V.L. Colvin, The potential environmental impact of engineered nanomaterials, Nat. Biotechnol. 21 (2003) 1166-1170.
DOI: 10.1038/nbt875
Google Scholar
[71]
J.R. Lead, K.J. Wilkinson, Aquatic colloids and nanoparticles: current knowledge and future trends, Environ. Chem. 3 (2006) 159-171.
DOI: 10.1071/en06025
Google Scholar
[72]
B. Nowack, T.D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut. 150 (2007) 5-22.
Google Scholar
[73]
T. Hofmann, F. Kammer, Estimating the relevance of engineered carbonaceous nanoparticle facilitated transport of hydrophobic organic contaminants in porous media, Environ. Pollut. 157 (2009) 1117-1126.
DOI: 10.1016/j.envpol.2008.10.022
Google Scholar
[74]
L. Zhang, L. Wang, P. Zhang, A.T. Kan, W. Chen, M.B. Tomson, Facilitated transport of 2, 2', 5, 5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns, Environ. Sci. Technol. 45 (2011) 1341-1348.
DOI: 10.1021/es102316m
Google Scholar
[75]
L. Wang, Y. Huang, A.T. Kan, M.B. Tomson, W. Chen, Enhanced transport of 2, 2', 5, 5'-polychlorinated biphenyl by natural organic matter (NOM) and surfactant-modified fullerene nanoparticles (nC60), Environ. Sci. Technol. 46 (2012) 5422-5429.
DOI: 10.1021/es300236w
Google Scholar
[76]
D.P. Jaisi, M. Elimelech, Single-walled carbon nanotubes exhibit limited transport in soil columns, Environ. Sci. Technol. 43 (2009) 9161-9166.
DOI: 10.1021/es901927y
Google Scholar
[77]
N. Singh, D. Hennecke, J. Hoerner, W. Koerdel, A. Schaeffer, Mobility and degradation of trinitrotoluene/metabolites in soil columns: Effect of soil organic carbon content, J. Environ. Sci. Heal. A 43 (2008) 682-693.
DOI: 10.1080/10934520801959823
Google Scholar