Influences of TiO2 Nanoparticles on the Transport of Hydrophobic Organic Contaminant in Soil

Article Preview

Abstract:

As nanotechnologies become more widely used, titania nanoparticles are being released to the subsurface environment via wastewater sludge applications. Titania nanoparticles are not only toxic to organisms in the environment, but recent studies revealed that they may also serve as carriers of hydrophobic organic contaminants and affect their fate and distribution in the subsurface environment. The mobility of titania nanoparticles varies depending on nanoparticle morphology characteristics, pH and the ionic strength of solutions, flow velocity, nanoparticle concentration, and the presence of surfactant or natural organic matter. Analogous to findings for natural and engineered carbonaceous nanoparticles, titania nanoparticles may enhance the transport of hydrophobic organic contaminants in porous media. However, to prove this hypothesis, further research is necessary. Thus experiments examining the impacts of titania nanoparticle on the hydrophobic organic matter transport in porous media were designed, which consist of three different sets of column experiments. These experimental sets will investigate the effects of the presence of titania nanoparticles, the size of nanoparticles and the organic carbon content in soil, respectively. Due to the estimation of the potential for the titania nanoparticles to facilitate organic contaminant transport, the experiment results are expected as: (a) the presence of titania nanoparticles will enhance the organic contaminant transport in porous media; (b) smaller nanoparticles will adsorb more organic contaminants and enhance their transport as the result of the increasing specific surface area; (c) soil containing higher organic matter content will compete for the adsorption of organic contaminants and retard their facilitated transport by titania nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1010-1012)

Pages:

55-68

Citation:

Online since:

August 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ISO/TS 27687. 2008, 2008. Nanotechnologies – Terminology and Definitions for Nano-objects – Nanoparticle, Nanofibre and Nanoplate, first ed.

DOI: 10.3403/30199918u

Google Scholar

[2] K. Tiede, A.B.A. Boxall, S.P. Tear, J. Lewis, H. David, M. Hassellov, Detection and characterization of engineered nanoparticles in food and the environment, Food Addit. Contam. 25 (2008) 795–821.

DOI: 10.1080/02652030802007553

Google Scholar

[3] R.D. Handy, B.J. Shaw, Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology, Health Risk Soc. 9 (2007) 125-144.

DOI: 10.1080/13698570701306807

Google Scholar

[4] F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Enriron. Sci. Technol. 43 (2009) 9216-9222.

DOI: 10.1021/es9015553

Google Scholar

[5] B. Chefetz, A.P. Deshmukh, P.G. Hatcher, Pyrene sorption by natural organic matter, Enriron. Sci. Technol. 34 (2000) 2925-2930.

DOI: 10.1021/es9912877

Google Scholar

[6] H. Choi, M.Y. Corapcioglu, Effect of colloids on volatile contaminant transport and air–water partitioning in unsaturated porous media, Water Resour. Res. 33 (1997a) 2447–2457.

DOI: 10.1029/97wr02229

Google Scholar

[7] T. Hofmann, A. Wendelborn, Colloid facilitated transport of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to the groundwater at Ma Da area, Vietnam, Environ. Sci. Pollut. R. 14 (2007) 223–224.

DOI: 10.1065/espr2007.02.389

Google Scholar

[8] Y.P. Chin, P.M. Gschwend, Partitioning of polycyclic aromatic-hydrocarbons to marine porewater organic colloids, Environ. Sci. Technol. 26 (1992) 1621–1626.

DOI: 10.1021/es00032a020

Google Scholar

[9] M. Laegdsmand, L.W. De Jonge, P. Moldrup, K. Keiding, Pyrene sorption to water-dispersible colloids: effect of solution chemistry and organic matter, Vadose Zone J. 3 (2004) 451–461.

DOI: 10.2113/3.2.451

Google Scholar

[10] A.A. MacKay, P.M. Gschwend, Enhanced concentrations of PAHs in groundwater at a coal tar site, Environ. Sci. Technol. 35 (2001) 1320–1328.

DOI: 10.1021/es0014786

Google Scholar

[11] A. Prechtel, P. Knabner, E. Schneid, K.U. Totsche, Simulation of carrierfacilitated transport of phenanthrene in a layered soil profile, J. Contam. Hydrol. 56 (2002) 209–225.

DOI: 10.1016/s0169-7722(01)00211-x

Google Scholar

[12] K.U. Totsche, S. Jann, I. Kogel-Knabner, Release of polycyclic aromatic hydrocarbons, dissolved organic carbon, and suspended matter from disturbed NAPL-contaminated gravelly soil material, Vadose Zone J. 5 (2006) 469–479.

DOI: 10.2136/vzj2005.0057

Google Scholar

[13] K.U. Totsche, S. Jann, I. Kogel-Knabner, Single event-driven export of polycyclic aromatic hydrocarbons and suspended matter from coal tar-contaminated soil, Vadose Zone J. 6 (2007) 233–243.

DOI: 10.2136/vzj2006.0083

Google Scholar

[14] H. Choi, M.Y. Corapcioglu, Transport of a non-volatile contaminant in unsaturated porous media in the presence of colloids, J. Contam. Hydrol. 25 (1997b) 299–324.

DOI: 10.1016/s0169-7722(96)00040-x

Google Scholar

[15] C.G. Enfield, G. Bengtsson, Macromolecular transport of hydrophobic contaminants in aqueous environments, Ground Water 26 (1988) 64.

DOI: 10.1111/j.1745-6584.1988.tb00368.x

Google Scholar

[16] T.K. Sen, K.C. Khilar, Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media, Adv. Colloid Interfac. 119 (2006) 71–96.

DOI: 10.1016/j.cis.2005.09.001

Google Scholar

[17] L.W. De Jonge, C. Kjaergaard, P. Moldrup, Colloids and colloid-facilitated transport of contaminants in soils: an introduction, Vadose Zone J. 3 (2004) 321.

DOI: 10.2113/3.2.321

Google Scholar

[18] D. Grolimund, M. Borkovec, K. Barmettler, H. Sticher, Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study, Environ. Sci. Technol. 30 (1996) 3118–3123.

DOI: 10.1021/es960246x

Google Scholar

[19] O. Gustafsson, P.M. Gschwend, Aquatic colloids: concepts, definitions, and current challenges, Limnol. Oceanogr. 42 (1997a) 519.

DOI: 10.4319/lo.1997.42.3.0519

Google Scholar

[20] J.F. McCarthy, J.M. Zachara, Subsurface transport of contaminants: mobile colloids in the subsurface environment may alter the transport of contaminants, Environ. Sci. Technol. 23 (1989) 496.

DOI: 10.1021/es00063a001

Google Scholar

[21] Y. Ouyang, D. Shinde, R.S. Mansell, W. Harris, Colloid-enhanced transport of chemicals in subsurface environments: a review, Crit. Rev. Env. Sci. Tec. 26 (1996) 189–204.

DOI: 10.1080/10643389609388490

Google Scholar

[22] J.N. Ryan, M. Elimelech, Colloid mobilization and transport in groundwater, Colloid Surface A 107 (1996) 1–56.

Google Scholar

[23] J.E. Saiers, J.N. Ryan, Introduction to special section on colloid transport in subsurface environments, Water Resour. Res. 42 (2006).

DOI: 10.1029/2006wr005620

Google Scholar

[24] M.R. Wiesner, G.V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials, Environ. Sci. Technol. 40 (2006) 4336-4345.

DOI: 10.1021/es062726m

Google Scholar

[25] M.A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Perez-Rivera, K. Hristovski, Titanium nanomaterial removal and release from wastewater treatment plants, Environ. Sci. Technol. 43 (2009) 6757-6763.

DOI: 10.1021/es901102n

Google Scholar

[26] USEPA, 2007. Nanotechnology White Paper. Prepared for the U.S. Environmental Protection Agency by Members of the Nanotechnology Workgroup, a Group of EPA's Science Policy Council Science Policy Council. U.S. Environmental Protection Agency, Washington, DC.

Google Scholar

[27] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[28] M.G. Antoniou, P.A. Nicolaou, J.A. Shoemaker, A.A. De La Cruz, D.D. Dionysiou, Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR, Appl. Catal. B-Environ. 91 (2009).

DOI: 10.1016/j.apcatb.2009.05.020

Google Scholar

[29] X. Quan, X. Zhao, S. Chen, H.M. Zhao, J.W. Chen, Y.Z. Zhao, Enhancement of p, p'-DDT photodegradation on soil surfaces using TiO2 induced by UV-light, Chemosphere 60 (2005) 266-273.

DOI: 10.1016/j.chemosphere.2004.11.044

Google Scholar

[30] J. Fang, X. Shan, B. Wen, J. Lin, G. Owens, Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environ. Pollut. 157 (2009) 1101-1109.

DOI: 10.1016/j.envpol.2008.11.006

Google Scholar

[31] D.P. Jaisi, N.B. Saleh, R.E. Blake, M. Elimelech, Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility, Environ. Sci. Technol. 42 (2008) 8317-8323.

DOI: 10.1021/es801641v

Google Scholar

[32] I.G. Godinez, C.J.G. Darnault, Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity, Water Res. 45 (2011) 839-851.

DOI: 10.1016/j.watres.2010.09.013

Google Scholar

[33] I. Chowdhury, Y. Hong, R.J. Honda, S.L. Walker, Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate, J. Colloid Interf. Sci. 360 (2011) 548-555.

DOI: 10.1016/j.jcis.2011.04.111

Google Scholar

[34] C.S. Hirtzel, R. Rajagopalan, Colloidal Phenomena: Advanced Topics, Noyes Publications, New Jersey, (1985).

Google Scholar

[35] R. Kretzschmar, H. Sticher, Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca2+ and trace metals, Environ. Sci. Technol. 31 (1997) 3497-3504.

DOI: 10.1021/es970244s

Google Scholar

[36] N. Saleh, H.J. Kim, T. Phenrat, K. Matyjaszewski, R.D. Tilton, G.V. Lowry, Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns, Environ. Sci. Technol. 42 (2008) 3349-3355.

DOI: 10.1021/es071936b

Google Scholar

[37] K.A.D. Guzman, M.P. Finnegan, J.F. Banfield, Influence of surface potential on aggregation and transport of titania nanoparticles, Environ. Sci. Technol. 40 (2006) 7688-7693.

DOI: 10.1021/es060847g

Google Scholar

[38] R.A. French, A.R. Jacobson, B. Kim, S.L. Isley, R.L. Penn, P.C. Baveye, Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles, Environ. Sci. Technol. 43 (2009) 1354-1359.

DOI: 10.1021/es802628n

Google Scholar

[39] K.L. Chen, M. Elimelech, Influence of humic acid on the aggregation kinetics of fullerenes (C60) nanoparticles in monovalent and divalent electrolyte solutions, J. Colloid Interf. Sci. 309 (2007) 126-134.

DOI: 10.1016/j.jcis.2007.01.074

Google Scholar

[40] B. Espinasse, E.M. Hotze, M.R. Wiesner, Transport and retention of colloidal aggregates of C-60 in porous media: effects of organic macromolecules, ionic composition, and preparation method, Environ. Sci. Technol. 41 (2007) 7396-7402.

DOI: 10.1021/es0708767

Google Scholar

[41] E. Navarro, A. Baun, R. Behra, N.B. Hartmann, J. Filser, A. J. Miao, A. Quigg, P.H. Santschi, L. Sigg, Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi, Ecotoxicology 17 (2008) 372-386.

DOI: 10.1007/s10646-008-0214-0

Google Scholar

[42] A. Franchi, C.R. O'Melia, Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media, Environ. Sci. Technol. 37 (2003) 1122-1129.

DOI: 10.1021/es015566h

Google Scholar

[43] S.E. Mylon, K.L. Chen, M. Elimelech, Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries, Langmuir 20 (2004) 9000-9006.

DOI: 10.1021/la049153g

Google Scholar

[44] K.L. Chen, S.E. Mylon, M. Elimelech, Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes, Environ. Sci. Technol. 40 (2006) 1516-1523.

DOI: 10.1021/es0518068

Google Scholar

[45] A.J. Pelley, N. Tufenkji, Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media, J. Colloid Interf. Sci. 321 (2008) 74-83.

DOI: 10.1016/j.jcis.2008.01.046

Google Scholar

[46] A. Amirbahman, T.M. Olson, Deposition kinetics of humic matter-coated hematite in porous-media in the presence of Ca2+, Colloid Surface A 99 (1995) 1-10.

DOI: 10.1016/0927-7757(95)03134-y

Google Scholar

[47] R.A. Akbour, J. Douch, M. Hamdani, P. Schmitz, Transport of kaolinite colloids through quartz sand: influence of humic acid, Ca2+ and trace metals. J. Colloid Interf. Sci. 253 (2002) 1-8.

DOI: 10.1006/jcis.2002.8523

Google Scholar

[48] S.R. Deshiikan, E. Eschenazi, K.D. Papadopoulos, Transport of colloids through porous beds in the presence of natural organic matter, Colloid Surface A 145 (1998) 93-100.

DOI: 10.1016/s0927-7757(98)00666-9

Google Scholar

[49] W.P. Johnson, B.E. Logan, Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter, Water Res. 30 (1996) 923-931.

DOI: 10.1016/0043-1354(95)00225-1

Google Scholar

[50] A. Tiraferri, R. Sethi, Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum, J. Nanopart. Res. 11 (2009) 635-645.

DOI: 10.1007/s11051-008-9405-0

Google Scholar

[51] D. Lin, N. Liu, K. Yang, B. Xing, F. Wu, Different stabilities of multiwalled carbon nanotubes in fresh surface water samples, Environ. Pollut. 158 (2010) 1270-1274.

DOI: 10.1016/j.envpol.2010.01.020

Google Scholar

[52] Y. Tian, B. Gao, C. Silvera-Batista, K.J. Ziegler, Transport of engineered nanoparticles in saturated porous media, J. Nanopar. Res. 12 (2010) 2371-2380.

DOI: 10.1007/s11051-010-9912-7

Google Scholar

[53] D.G. Brown, P.R. Jaffe, Effects of nonionic surfactants on bacterial transport through porous media, Environ. Sci. Technol. 35 (2001) 3877-3883.

DOI: 10.1021/es010577w

Google Scholar

[54] M. Abu-Zreig, R.P. Rudra, W.T. Dickinson, Effect of application of surfactants on hydraulic properties of soils, Biosyst. Eng. 84 (2003) 363-372.

DOI: 10.1016/s1537-5110(02)00244-1

Google Scholar

[55] A. Wiel-Shafran, Z. Ronen, N. Weisbrod, E. Adar, A. Gross, Potential changes in soil properties following irrigation with surfactant-rich greywater, Ecol. Eng. 26 (2006) 348-354.

DOI: 10.1016/j.ecoleng.2005.12.008

Google Scholar

[56] M.D. Mingorance, J.F. Fernandez Galvez, A. Pena, E. Barahona, Laboratory methodology to approach soil water transport in the presence of surfactants, Colloid Surface A 302 (2007) 75-82.

Google Scholar

[57] N.H. Tkachenko, Z.M. Yaremko, C. Bellmann, M.M. Soltys, The influence of ionic and nonionic surfactants on aggregative stability and electrical surface properties of aqueous suspensions of titanium dioxide, J. Colloid Interf. Sci. 299 (2006).

DOI: 10.1016/j.jcis.2006.03.008

Google Scholar

[58] J.M. Pettibone, D.M. Cwiertny, M. Scherer, V.H. Grassian, Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation, Langmuir 24 (2008) 6659-6667.

DOI: 10.1021/la7039916

Google Scholar

[59] Y. Zhang, Y. Chen, P. Westerhoff, K. Hristovski, J.C. Crittenden, Stability of commercial metal oxide nanoparticles in water, Water Res. 42 (2008) 2204-2212.

DOI: 10.1016/j.watres.2007.11.036

Google Scholar

[60] K. Nelson, T. Ginn, New collector efficiency equation for colloid filtration in both natural and engineered flow conditions, Water Resour. Res. 47 (2011).

DOI: 10.1029/2010wr009587

Google Scholar

[61] T.K. Sen, S.P. Mahajan, K.C. Khilar, Colloid-associated contaminant transport in porous media: 1. experimental studies, AIChE J. 48 (2002) 2366-2374.

DOI: 10.1002/aic.690481026

Google Scholar

[62] J.E. Saiers, Laboratory observations and mathematical modeling of colloid-facilitated contaminant transport in chemically heterogeneous systems, Water Resour. Res. 38 (2002) 1032.

DOI: 10.1029/2001wr000320

Google Scholar

[63] P.M. Huang, J.M. Bollag, N. Senesi, Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem, John Wiley & Sons, Chichester, (2002).

DOI: 10.1515/ci.2002.24.4.26a

Google Scholar

[64] B.D. Honeyman, Geochemistry: colloidal culprits in contamination, Nature 397 (1999) 23-24.

DOI: 10.1038/16150

Google Scholar

[65] A.B. Kersting, D.W. Efurd, D.L. Finnegan, D.J. Rokop, D.K. Smith, J.L. Thompson, Migration of plutonium in ground water at the Nevada Test Site, Nature 397 (1999) 56-59.

DOI: 10.1038/16231

Google Scholar

[66] J.F. McCarthy, J.M. Zachara, Subsurface transport of contaminants-mobile colloids in the subsurface environment may alter the transport of contaminants, Environ. Sci. Technol. 23 (1989) 496-502.

DOI: 10.1021/es00063a001

Google Scholar

[67] D. Grolimund, M. Borkovec, K. Barmettler, H. Sticher, Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study, Environ. Sci. Technol. 30 (1996) 3118-3123.

DOI: 10.1021/es960246x

Google Scholar

[68] X. Wang, J. Lu, M. Xu, B. Xing, Sorption of pyrene by regular and nanoscaled metal oxide particles: influence of adsorbed organic matter, Environ. Sci. Technol. 42 (2008) 7267-7272.

DOI: 10.1021/es8015414

Google Scholar

[69] K. Yang, B. Xing, Sorption of phenanthrene by humic acid-coated nanosized TiO2 and ZnO, Environ. Sci. Technol. 43 (2009) 1845-1851.

DOI: 10.1021/es802880m

Google Scholar

[70] V.L. Colvin, The potential environmental impact of engineered nanomaterials, Nat. Biotechnol. 21 (2003) 1166-1170.

DOI: 10.1038/nbt875

Google Scholar

[71] J.R. Lead, K.J. Wilkinson, Aquatic colloids and nanoparticles: current knowledge and future trends, Environ. Chem. 3 (2006) 159-171.

DOI: 10.1071/en06025

Google Scholar

[72] B. Nowack, T.D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut. 150 (2007) 5-22.

Google Scholar

[73] T. Hofmann, F. Kammer, Estimating the relevance of engineered carbonaceous nanoparticle facilitated transport of hydrophobic organic contaminants in porous media, Environ. Pollut. 157 (2009) 1117-1126.

DOI: 10.1016/j.envpol.2008.10.022

Google Scholar

[74] L. Zhang, L. Wang, P. Zhang, A.T. Kan, W. Chen, M.B. Tomson, Facilitated transport of 2, 2', 5, 5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns, Environ. Sci. Technol. 45 (2011) 1341-1348.

DOI: 10.1021/es102316m

Google Scholar

[75] L. Wang, Y. Huang, A.T. Kan, M.B. Tomson, W. Chen, Enhanced transport of 2, 2', 5, 5'-polychlorinated biphenyl by natural organic matter (NOM) and surfactant-modified fullerene nanoparticles (nC60), Environ. Sci. Technol. 46 (2012) 5422-5429.

DOI: 10.1021/es300236w

Google Scholar

[76] D.P. Jaisi, M. Elimelech, Single-walled carbon nanotubes exhibit limited transport in soil columns, Environ. Sci. Technol. 43 (2009) 9161-9166.

DOI: 10.1021/es901927y

Google Scholar

[77] N. Singh, D. Hennecke, J. Hoerner, W. Koerdel, A. Schaeffer, Mobility and degradation of trinitrotoluene/metabolites in soil columns: Effect of soil organic carbon content, J. Environ. Sci. Heal. A 43 (2008) 682-693.

DOI: 10.1080/10934520801959823

Google Scholar