Solubilization of Radionuclide 238U and 137Cs in Contaminated Soil with Acidithiobacillus thiooxidans

Article Preview

Abstract:

How to control and remediate the radionuclides-contaminated soil is attracting increasing attention. Researches on microbial solubilization of traces of 238U or 137Cs in contaminated soil with Acidithiobacillus thiooxidans were conducted. The results show that 238U or 137Cs can be solubilized by the strain, which can produce sulfuric acid steadily in liquid medium. In the 5th and 7th day the removal rate of 238U and 137Cs were up to 78.71% and 81.48%, respectively. At the same time, the destroying of soil nutrients can be neglected

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1010-1012)

Pages:

73-79

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Anderson B S, Hunt J W, Phillips B M, et al. Ecotoxicologic change at a remediated Superfund site in San Francisco, California, USA[J]. Environ Toxicol Chem, 2009, 19(4): 879~887.

DOI: 10.1002/etc.5620190414

Google Scholar

[2] Andrew J H. Technology strategy in a regulation-driven market: Lessons from the U.S. Superfund program[J]. Busin Strat Environ, 1998, 5(1): 1~11.

Google Scholar

[3] Arvela H, Markkanen M, Lemmelä H. Mobile survey of environmental gamma radiation and fallout levels in Finland after the Chernobyl accident[J]. Radiat Prot Dosim, 1990, 32(3): 177~184.

DOI: 10.1093/oxfordjournals.rpd.a080734

Google Scholar

[4] Beaufait L J, Pablo S, Stevenson F R, et al. Plutonium Separation Method: U. S[P]. patent, 2860949, (1958).

Google Scholar

[5] Beck H L, Helfer I K, Bouville A, et al. Estimates of fallout in the Western U.S. from Nevada weapons testing based on gummed-film monitoring data[J]. Health Phys, 1990, 59(5): 565~570.

DOI: 10.1097/00004032-199011000-00008

Google Scholar

[6] Soudek P, Podracka E, Vagner M, et al. 226Ra uptake from soils into different plant species[J]. J Radioanal Nucl Chem, 2004, 262(1): 187~189.

Google Scholar

[7] N. Ngwenya, E.M.N. Chirwa. Single and binary component sorption of the fission products Sr2+, Cs+and Co2+ from aqueous solutions onto sulphate reducing bacteria[J]. Minerals Engineering, 2010, 23, 463-470.

DOI: 10.1016/j.mineng.2009.11.006

Google Scholar

[8] Kaiguang Hu, Aihe Wang, Dexin Ding, Kaixuan TAn. Effect Factors of Treating Wastewater Containing Uranium by Sulfate Reducing Bacteria with Iron[J]. Nonferrous Metals: 2011, 63(1): 88-91.

Google Scholar

[9] Danshi Bao. Soil Agricultural Chemistry Analysis[M]. Beijing: Chinese Agricultural Press, (2000).

Google Scholar

[10] Alberts J J, Muller R N. The distribution of 239, 240Pu, 238Pu, and 137Cs in various particle size classes of Lake Michigan sediments[J]. J Environ Qual, 1979, 8(1): 20~22.

DOI: 10.2134/jeq1979.00472425000800010005x

Google Scholar

[11] Bihari A, Dezso Z. Examination of the effect of particle size on the radionuclide content of soils[J]. J Environ Radioactiv, 2008, 99(7): 1083~1089.

Google Scholar

[12] Feng Sha. Radioactive contamination of soil washing decontamination study. Master thesis, China institute of atomic energy[D], (2005).

Google Scholar

[13] Yihua Xia. The national environmental protection bureau of radioactive site clean-up of the standards about the consideration of the problem[J]. Radiation Protection Bulletin, 1995, 15(3): 7~11.

Google Scholar

[14] Yue Yang, Zhijie Gu, Zhiming Wang. Soil Cleanup Levels in Remedying Radioactively Contaminated Sites in America[J]. Radiation Protection Bulletin, 2007, 27(2): 8~12.

Google Scholar

[15] Maria G, Lucian V P, Igor C. Characterization and remediation of soils contaminated with uranium[J]. J Hazard Mat, 2009, 163(4): 475~510.

Google Scholar

[16] Yamaguchi N, Kawasaki A, Iiyama I. Distribution of uranium in soil components of agricultural fields after long-term application of phosphate fertilizers[J]. Sci Total Environ, 2009, 407(4): 1383~1390.

DOI: 10.1016/j.scitotenv.2008.10.011

Google Scholar

[17] Lingying Dong. Uranium in analytical chemistry. Beijing: Atomic Energy Press, (1982).

Google Scholar

[18] Lust M, Raelo K, Raelo E. Studies on Chernobyl radiocesium in Estonia STUK-A217. Radiation and Nuclear Safety Authority[J]. Helsinki, Finland, (2006).

Google Scholar

[19] Mohammad R A, Mehdi K, Sedigheh V. Distribution of radioactive pollution of 238U, 232Th, 40K and 137Cs in northwestern coasts of Persian Gulf, Iran[J]. Marine Pollut Bull, 2008, 56(5): 751~757.

DOI: 10.1016/j.marpolbul.2007.12.010

Google Scholar

[20] Realo E, Jõgi J, Koch R, et al. Studies on radiocesium in Estonian soils[J]. J Environ Radioact, 1995, 29(2): 111~119.

DOI: 10.1016/0265-931x(95)00020-b

Google Scholar

[21] Shutov V N, Travnikov I G, Bruk G Y, et al. Current contamination by 137Cs and 90Sr of the inhabited part of the Techa river basin in the Urals[J]. J Environ Radioactiv, 2002, 61(1): 91~109.

DOI: 10.1016/s0265-931x(01)00117-5

Google Scholar

[22] Sylvie R D, Philippe R, Jean-Michel M. 137Cs in French soils: Deposition patterns and 15-year evolution[J]. Sci Total Environ, 2007, 374(3): 388~398.

DOI: 10.1016/j.scitotenv.2006.12.037

Google Scholar

[23] Chengfeng Meng. Environment of radionuclide cesium rubidium in biological sample determination method discussed in this paper[J]. Science and technology aspect of gansu, 2003, 32(1): 23~24.

Google Scholar