[1]
A.R. Miedema, P.F. de Chatel, F.R. de Boer, Cohesion in alloys – fundamentals of a semi-empirical model, Physica. 100B (1980) 1-28.
DOI: 10.1016/0378-4363(80)90054-6
Google Scholar
[2]
P. R. Subramanian, J. H. Perepezko, The Ag-Cu (silver-copper) system, Journal of Phase Equilibria. 14 (1993) 62-75.
DOI: 10.1007/bf02652162
Google Scholar
[3]
Y.Z. Tian, Z.F. Zhang, Microstructures and tensile deformation behavior of Cu–16 wt.%Ag binary alloy, Materials Science and Engineering A. 508 (2009) 209-213.
DOI: 10.1016/j.msea.2008.12.050
Google Scholar
[4]
J.B. Liu, L. Meng, Y.W. Zeng, Microstructure evolution and properties of Cu–Ag microcomposites with different Ag content, Materials Science and Engineering A. 435-436 (2006) 237-244.
DOI: 10.1016/j.msea.2006.07.125
Google Scholar
[5]
Alexander P. Zhilyaev, Terence G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science. 53 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[6]
Y.F. Sun, H. Fujii, T. Nakamura, N.Tsuji, D. Todaka and M.Umemoto, Critical strain for mechanical alloying of Cu-Ag, Cu-Ni and Cu-Zr by high-pressure torsion, Scripta Materialia. 65 (2011) 489-492.
DOI: 10.1016/j.scriptamat.2011.06.005
Google Scholar
[7]
A.I. Ancharov, A.Yu. Manakov, N.A. Mezentsev, B.P. Tolochko, M.A. Sheromov, V.M. Tsukanov, New station at the 4th beamline of the VEPP-3 storage ring, Nucl. Nuclear Instruments and Methods in Physics Research Section A. 470 (2001) 80-83.
DOI: 10.1016/s0168-9002(01)01029-4
Google Scholar
[8]
Vladimir E. Fortov, Extreme states of matter on Earth and in space, Physics-Uspekhi (Advances in Physical Sciences). 52 (2009) 615-647.
DOI: 10.3367/ufne.0179.200906h.0653
Google Scholar
[9]
L.M. Voronova, T.I. Chashchukhina, M.V. Degtyarev, V.P. Pilyugin, Structure evolution and stability of copper deformed at 80 K, Russian Metallurgy. 4 (2012) 303-306.
DOI: 10.1134/s0036029512040131
Google Scholar
[10]
V.P. Pilyugin, T.M. Gapontseva, T.I. Chashchukhina, L.M. Voronova, L.I. Shchinova, M.V. Degtyarev, Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure, The Physics of Metals and Metallography. 105 (2008) 409-419.
DOI: 10.1134/s0031918x08040157
Google Scholar
[11]
V.A. Teplov, V.P. Pilugin, V.S. Gaviko, E.G. Chernyshov, Nonequilibrium solid-solution and nanocrystal structure of Fe-Cu alloy after plastic-deformation under pressure, Philosophical magazine B. 68 (1993) 877-881.
DOI: 10.1080/13642819308217944
Google Scholar
[12]
V.L. Gapontsev, I.K. Razumov, Yu.N. Gornostyrev, A.E. Ermakov, V.V. Kondrat'ev, Theory of diffusional phase transformations in nanocrystalline alloys upon severe plastic deformation: III. Alloys with limited solubility, The Physics of Metals and Metallography. 99 (2005) 365-375.
DOI: 10.1134/s0031918x18120177
Google Scholar
[13]
V.M. Farber, Contribution of diffusion processes to structure formation upon intensive cold deformation of metals, Metal Science and Heat Treatment. 44 (2002) 317-323.
Google Scholar
[14]
Yu.A. Skakov, High-energy cold plastic deformation, diffusion, and mechanochemical synthesis, Metal Science and Heat Treatment. 46 (2004) 137-145.
DOI: 10.1023/b:msat.0000036665.13966.65
Google Scholar
[15]
V.L. Gapontsev, Reply to comments by Yu. A. Skakov and M. A. Shtremel' on the article "Induced diffusion: the main mechanism for the production of driven alloys", Metal Science and Heat Treatment. 50 (2008) 252-258.
DOI: 10.1007/s11041-008-9043-2
Google Scholar
[16]
R.A. Andrievskii, A.M. Glezer, Size effects in nanocrystalline materials: II. Mechanical and physical properties, The Physics of Metals and Metallography. 89 (2000) 83-102.
Google Scholar
[17]
Stahlfehlerfibel, VEB Deutcher Verlag fur Grundstoffindustrie, Leipzig, (1975)
Google Scholar