Cu-Ag Solid Solutions Formation and Properties upon Severe Plastic Deformation

Article Preview

Abstract:

A number of nonequilibrium nanocrystalline fcc solid solutions Cu1-x-Agx (x = 0,1; 0,2; ... 0,9; 1,0) were obtained by mechanical alloying of powders by the use of high pressure torsion. Chemical homogeneity, microstructure, mechanical properties and thermostability were studied. The obtained alloys were found to be characterized by a positive excess over Vegard law, ~ 20 nm grain sizes, a microhardeness of 4.5-6 times higher than the Cu and Ag one and brittle type of the fracture surface. In situ shear stress vs. strain measurements and energy-power parameters estimation were performed. A decomposition of nonequilibrium solid solution induced by a thermal influence begins from close to room temperatures and finishes completely at heating up to 500°С accompanied by collective recrystallization development.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-217

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.R. Miedema, P.F. de Chatel, F.R. de Boer, Cohesion in alloys – fundamentals of a semi-empirical model, Physica. 100B (1980) 1-28.

DOI: 10.1016/0378-4363(80)90054-6

Google Scholar

[2] P. R. Subramanian, J. H. Perepezko, The Ag-Cu (silver-copper) system, Journal of Phase Equilibria. 14 (1993) 62-75.

DOI: 10.1007/bf02652162

Google Scholar

[3] Y.Z. Tian, Z.F. Zhang, Microstructures and tensile deformation behavior of Cu–16 wt.%Ag binary alloy, Materials Science and Engineering A. 508 (2009) 209-213.

DOI: 10.1016/j.msea.2008.12.050

Google Scholar

[4] J.B. Liu, L. Meng, Y.W. Zeng, Microstructure evolution and properties of Cu–Ag microcomposites with different Ag content, Materials Science and Engineering A. 435-436 (2006) 237-244.

DOI: 10.1016/j.msea.2006.07.125

Google Scholar

[5] Alexander P. Zhilyaev, Terence G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[6] Y.F. Sun, H. Fujii, T. Nakamura, N.Tsuji, D. Todaka and M.Umemoto, Critical strain for mechanical alloying of Cu-Ag, Cu-Ni and Cu-Zr by high-pressure torsion, Scripta Materialia. 65 (2011) 489-492.

DOI: 10.1016/j.scriptamat.2011.06.005

Google Scholar

[7] A.I. Ancharov, A.Yu. Manakov, N.A. Mezentsev, B.P. Tolochko, M.A. Sheromov, V.M. Tsukanov, New station at the 4th beamline of the VEPP-3 storage ring, Nucl. Nuclear Instruments and Methods in Physics Research Section A. 470 (2001) 80-83.

DOI: 10.1016/s0168-9002(01)01029-4

Google Scholar

[8] Vladimir E. Fortov, Extreme states of matter on Earth and in space, Physics-Uspekhi (Advances in Physical Sciences). 52 (2009) 615-647.

DOI: 10.3367/ufne.0179.200906h.0653

Google Scholar

[9] L.M. Voronova, T.I. Chashchukhina, M.V. Degtyarev, V.P. Pilyugin, Structure evolution and stability of copper deformed at 80 K, Russian Metallurgy. 4 (2012) 303-306.

DOI: 10.1134/s0036029512040131

Google Scholar

[10] V.P. Pilyugin, T.M. Gapontseva, T.I. Chashchukhina, L.M. Voronova, L.I. Shchinova, M.V. Degtyarev, Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure, The Physics of Metals and Metallography. 105 (2008) 409-419.

DOI: 10.1134/s0031918x08040157

Google Scholar

[11] V.A. Teplov, V.P. Pilugin, V.S. Gaviko, E.G. Chernyshov, Nonequilibrium solid-solution and nanocrystal structure of Fe-Cu alloy after plastic-deformation under pressure, Philosophical magazine B. 68 (1993) 877-881.

DOI: 10.1080/13642819308217944

Google Scholar

[12] V.L. Gapontsev, I.K. Razumov, Yu.N. Gornostyrev, A.E. Ermakov, V.V. Kondrat'ev, Theory of diffusional phase transformations in nanocrystalline alloys upon severe plastic deformation: III. Alloys with limited solubility, The Physics of Metals and Metallography. 99 (2005) 365-375.

DOI: 10.1134/s0031918x18120177

Google Scholar

[13] V.M. Farber, Contribution of diffusion processes to structure formation upon intensive cold deformation of metals, Metal Science and Heat Treatment. 44 (2002) 317-323.

Google Scholar

[14] Yu.A. Skakov, High-energy cold plastic deformation, diffusion, and mechanochemical synthesis, Metal Science and Heat Treatment. 46 (2004) 137-145.

DOI: 10.1023/b:msat.0000036665.13966.65

Google Scholar

[15] V.L. Gapontsev, Reply to comments by Yu. A. Skakov and M. A. Shtremel' on the article "Induced diffusion: the main mechanism for the production of driven alloys", Metal Science and Heat Treatment. 50 (2008) 252-258.

DOI: 10.1007/s11041-008-9043-2

Google Scholar

[16] R.A. Andrievskii, A.M. Glezer, Size effects in nanocrystalline materials: II. Mechanical and physical properties, The Physics of Metals and Metallography. 89 (2000) 83-102.

Google Scholar

[17] Stahlfehlerfibel, VEB Deutcher Verlag fur Grundstoffindustrie, Leipzig, (1975)

Google Scholar