Temperature Effect on Solid Solution Formation Mechanism and Kinetics of Cu-Zn System under High Pressure Torsion

Article Preview

Abstract:

Influence of a nearly room and cryogenic severe deformation of a Cu-Zn powder mixture on a structural and phase transitions and kinetics of mechanical alloying was investigated. A sufficient retardation of structural and phase transformations and low homogeneity of solid solution made at 80K were established in comparison to processing at 273K. A lowering of solution formation kinetics rate is supposed to be due to lock of plastic deformation mechanisms, activated by thermal impact.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-223

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.S. Gilman, J.S. Benjamin, Mechanical Alloying, Annual Review of Materials Science. 13 (1983) 279-361.

Google Scholar

[2] ZUO Ke-sheng, XI Sheng-qi, ZHOU Jing-en, Effect of temperature on mechanical alloying of Cu-Zn and Cu-Cr system, Trans. Nonferrous Met. Soc. China. 19 (2009) 1206-1214.

DOI: 10.1016/s1003-6326(08)60430-6

Google Scholar

[3] Alexander P. Zhilyaev, Terence G. Langdon, Progress in Materials Science. 53 (2008) 893–979.

Google Scholar

[4] L.M. Voronova, T.I. Chashchukhina, M.V. Degtyarev, V.P. Pilyugin, Structure evolution and stability of copper deformed at 80 K, Russian Metallurgy. 4 (2012) 303-306.

DOI: 10.1134/s0036029512040131

Google Scholar

[5] V.P. Pilyugin, T.M. Gapontseva, T.I. Chashchukhina, L.M. Voronova, L.I. Shchinova, M.V. Degtyarev, Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure, Physics of Metals and Metallography. 105 (2008) 409-419.

DOI: 10.1134/s0031918x08040157

Google Scholar

[6] B. Predel, Cu-Zn (Copper-Zinc), in: O. Madelung (Ed.) Landolt-Börnstein - Group IV Physical Chemistry, Springer Materials - The Landolt-Börnstein Database, (http://www.springermaterials.com). DOI: 10.1007/10086090_1134, 1994, pp.1-11.

DOI: 10.1007/10086090_1134

Google Scholar

[7] V.A. Teplov, V.P. Pilugin, V.S. Gaviko, E.G. Chernyshov, Nonequilibrium solid-solution and nanocrystal structure of Fe-Cu alloy after plastic-deformation under pressure, Philosophical magazine B. 68 (1993) 877-881.

DOI: 10.1080/13642819308217944

Google Scholar

[8] J.P. Hirth, J. Lothe, Theory of Dislocations, second ed., Krieger Publishing Company, Malabar, Florida, 1982.

Google Scholar

[9] J. Friedel, Dislocations, Pergamon Press, London, (1967)

Google Scholar

[10] V.A. Starenchenko, D.N. Cherepanov, Yu.V. Solov'eva, L.E. Popov, Generation and accumulation of point defects in FCC single crystals upon plastic strain, Russian Physics Journal. 52 (2009) 398-410.

DOI: 10.1007/s11182-009-9237-0

Google Scholar

[11] V.L. Gapontsev, I.K. Razumov, Yu.N. Gornostyrev, A.E. Ermakov, V.V. Kondrat'ev, Theory of diffusional phase transformations in nanocrystalline alloys upon severe plastic deformation: III. Alloys with limited solubility, The Physics of Metals and Metallography. 99 (2005) 365-375.

DOI: 10.1134/s0031918x18120177

Google Scholar

[12] Farghalli A. Mohamed, Shehreen S. Dheda, On the minimum grain size obtainable by high-pressure torsion, Materials Science & Engineering A. 558 (2012) 59–63.

DOI: 10.1016/j.msea.2012.07.066

Google Scholar

[13] G. Dlubek, O. Brummer, E. Hensel, Positron annihilation investigation for an estimation of the dislocation density and vacancy concentration of plastically deformed polycrystalline Ni of different purity, Physica Status Solidi (a). 34 (1976) 737-746.

DOI: 10.1002/pssa.2210340239

Google Scholar