[1]
A.J.E. Foreman, M.J. Makin, Dislocation movement through random arrays of obstacles, Cand. J. Phys. 45, 2 (1967) 511–517.
DOI: 10.1139/p67-044
Google Scholar
[2]
A.A. Alekseev, B.M. Strunin, Change of elastic energy of crystal during its plastic-deformation, Physics of the Solid State. 17, 5 (1975) 1457-1459.
Google Scholar
[3]
V.I. Veselov, G.I. Nichugovskii, A.A. Predvoditelev, Formation of dislocation-structure of sliding lines, Soviet Physics Journal. 26, 1 (1983) 65–69.
DOI: 10.1007/bf00892183
Google Scholar
[4]
S.I. Zaitsev, E.M. Nadgornyi, Computer simulation of thermally activated dislocation motion through a random array of point-obstacles, Nuclear Metallurgy. 20 (1976) 707–720.
Google Scholar
[5]
K. Hanson, J.W. Morris, S. Altintas, Computer simulation of dislocation glide through fields of point obstacles, Nuclear Metallurgy. 20 (1976) 917–928.
Google Scholar
[6]
R. Labusch, R.W. Schwars, Movement of dislocations through a random of weak obstacles of finite width, Nuclear Metallurgy. 20 (1976) 657–671.
Google Scholar
[7]
T. Cadman, R.J. Arsenault, The nature of dislocation motion through a random array of thermally activated, Scr. Metallurgica. 6, 7 (1972) 593–599.
DOI: 10.1016/0036-9748(72)90097-x
Google Scholar
[8]
A.V. Eremeev, B.M. Loginov, G.V. Bushueva, N.A. Tyapunina, Simulation of dislocation-motion through double-component field dislocation ensembles and prismatic loops in crystals with hcp lattice, Crystallography Reports. 31, 4 (1986) 715–719.
Google Scholar
[9]
N.A. Tyapunina, Yu.A. Ivashkin, Excess concentration of point, defect in alkali crystals exposed to ultrasouse waves, Phys. Stat. Sol. (a). 79 (1983) 351–359.
DOI: 10.1002/pssa.2210790203
Google Scholar
[10]
M.I. Slobodskoi, T.N. Golosova, L.E. Popov, Source of dislocations in the field of obstacles, Soviet Physics Journal. 33, 12 (1990) 20-24.
DOI: 10.1007/bf00895274
Google Scholar
[11]
M.I. Slobodskoi, A.V. Ushakov, V.S. Kobytev and L.E. Popov, Computer modeling of athermal expansion of a dislocation loop in a field of stoppers of 2 types, Soviet Physics Journal. 28, 3 (1985) 117–118.
Google Scholar
[12]
M.I. Slobodskoi, V.S. Kobytev, L.E. Popov, Dependence of mean squares covered by a dislocation loop after one thermal-activation, Soviet Physics Journal. 28, 3 (1985) 119–120.
Google Scholar
[13]
M.I. Slobodskoy, L.E. Popov, Investigation of the slip phenomenon in crystals using methods of simulation modelling, Publishing of Tomsk State University of Architecture and Building, Tomsk, 2004.
Google Scholar
[14]
V.E. Panin, A.V. Panin, Fundamental role of nanoscale structural level of plastic strain in solids, Metal science and heat treatment. 48, 11-12 (2006) 533-538.
DOI: 10.1007/s11041-006-0131-x
Google Scholar
[15]
V.E. Panin, Yu.V. Grinyaev, T.F. Elsukova and A.G. Ivanchin, Structural levels of deformation in solids, Structural levels of deformation of solids, Soviet Physics Journal. 25, 6 (1982) 479-497.
DOI: 10.1007/bf00898745
Google Scholar
[16]
L.E. Popov, L.Ya. Pudan, S.N. Kolupaeva, V.S. Kobytev and V.A. Starenchenko, Mathematical modeling of plastic strain, Publishing of Tomsk University, Tomsk, 1990.
Google Scholar
[17]
S.I. Puspescheva, S.N. Kolupaeva, L.E. Popov, The dynamics of crystallographic slip in copper, Metal Science. 9 (2003) 14-19.
Google Scholar
[18]
S.N. Kolupaeva, A.E. Petelin, Mathematical model of formation of a crystallographic slip zone in the representation of a piecewise-continuous closed dislocation loop, Russian physics journal. 57, 2 (2014) 15-20.
DOI: 10.1007/s11182-014-0220-z
Google Scholar
[19]
K.H. Pfeeffer, P. Schiller, A. Seeger, Fehlstellener Zengung durch aufgespaltene Versetzungssprunge in kubisch-flachenzentrientrierten Metallen, Phys. Status Solidi. 8, 2 (1965) 517-532.
DOI: 10.1002/pssb.19650080211
Google Scholar
[20]
S.N. Kolupaeva, А.Е. Petelin, Software support for the mathematical modeling of plastic deformation in crystalline materials, Vestnik TSUAB. 3 (2011) 159-163.
Google Scholar
[21]
J.D. Gilman, The microdiynamic strain theory, Microplasticity, Metallurgy, Moscow (1972) pp.18-36.
Google Scholar