[1]
N.A. Grigorieva, T.A. Kovalevskaya, Experimental study of the mechanisms of plastic deformation of the alloy Al-6%Zn-3%Mg, Bulletin of the Russ. Acad. of Sci.: Phys. 68, 10 (2004) 1443-1448.
Google Scholar
[2]
N.A. Grigorieva, T.A. Kovalevskaya, Laws of formation of shear zones in the alloy Al-Zn-Mg, located in different structural states, Physics of strength and plasticity of materials: Proceedings of the XVI International Conference (Samara, 26 - 29 June 2006). Volume I. Samara Samar. Reg. tehn. Univ. (2006) 83-86.
Google Scholar
[3]
N.A. Grigorieva, O.I. Daneyko, T.A. Kovalevskaya, Plastic deformation heterophase aluminum-based alloys. Model and experiment, Fundamental Problems of modern materials. 5, 1 (2008) 41-46.
Google Scholar
[4]
N.A. Grigorieva, O.I. Daneyko, T. A. Kovalevskaya, The development of plastic deformation in precipitation hardening alloys based on aluminum, Deformation and Fracture of Materials. 10 (2013) 30–39.
Google Scholar
[5]
L. E. Popov, V.S. Kobytev, T. A. Kovalevskaya, The concept of hardening and dynamic recovery in the theory of plastic deformation, Russ. Phys. J. 6 (1982) 56–82.
Google Scholar
[1]
T. A. Kovalevskaya, I. V. Vinogradova, and L. E. Popov, Mathematical Modeling of Plastic Deformation of Heterophase Alloys, Tomsk University Press, Tomsk, 1992.
Google Scholar
[6]
T. A. Kovalevskaya, O. I. Daneyko, and S. N. Kolupaeva, Influence of initial defect state of dispersion-hardened material on the evolution of defect subsystem in the deformation process, Deformation and Fracture of Materials, 1 (2006) 29–36.
DOI: 10.4028/www.scientific.net/amr.1013.287
Google Scholar
[7]
T. A. Kovalevskaya, O. I. Daneyko, and S. N. Kolupaeva, Influence of scale characteristics of the hardening phase on regularities of plastic deformation of dispersion-hardened materials, Bulletin of the Russ. Acad. of Sci.: Phys. 68, 10 (2004) 1412–1418.
Google Scholar
[8]
O. I. Daneyko, T. A. Kovalevskaya, S. N. Kolupaeva, et al., Effect of temperature and strain rate on the evolution of the dislocation structure of dispersion-strengthened material with FCC matrix, Russ. Phys. J. 54, 9 (2011) 37–40.
DOI: 10.1007/s11182-012-9707-7
Google Scholar
[9]
T. A. Kovalevskaya, O. I. Daneyko, S. N. Kolupaeva, et al., A mathematical model of the kinetics of strain hardening of single crystals of heterophase alloys, Bulletin of the Russ. Acad. of Sci.: Phys. 67, 6 (2003) 892–896.
Google Scholar
[10]
T. A. Kovalevskaya, O. I. Daneyko, and S. N. Kolupaeva, Influence of incoherent phase on localization crystallographic slip in fcc materials at different temperatures, Bulletin of Tomsk State Univ. of Architecture and Building. 2 (2003) 57–64.
Google Scholar
[11]
A. Korbel, F. Dobrzanski, M. Richert, Strain hardening of aluminium at high strain, Acta Met. 31 (1983) 293-298.
DOI: 10.1016/0001-6160(83)90106-2
Google Scholar
[12]
M.L. Bernstein, Structure of deformed metals, Metallurgiya, Moscow, 1977.
Google Scholar
[13]
R.R. Romanova, A.M. Baranowski, V.G. Pushin etc. The effect of plastic deformation on the structural transformation of the mechanical properties of the alloy Al-Zn-Mg, FMM. 47, 2 (1979) 580-587.
Google Scholar
[14]
W.K. Chen, Dispersion hardening high-strength aluminum alloy, in: The strength of metals and alloys, Metallurgy, Moscow, 1990, pp.81-83.
Google Scholar
[15]
M. Harrison, J.B. Martin, Effect on the distribution of dispersoids in the alloys is fatigue crack Al-Zn-Mg, in: The strength of metals and alloys, Metallurgy, Moscow, 1990, pp.253-262.
Google Scholar
[16]
C. Kotsanda, Fatigue failure of metals, Metallurgiya, Moscow, 1976.
Google Scholar
[17]
G.G. Galuts, R.N. Eshenko, A.N. Borychev etc., The microstructure of adiabatic shear bands, FMM, 4 (1992) 43-52.
Google Scholar