[1]
F.J. Humphreys and P.B. Hirsch, Work-hardening and recovery of dispersion hardened alloys, Phil. Mag. 34 (1978) 373–399.
Google Scholar
[2]
R.W.K. Honeycombe, The Plastic Deformation of Metals, 2nd ed., Edward Arnold, London (1984).
Google Scholar
[3]
N.A. Grigorieva, O.I. Daneyko, T.A. Kovalevskaya, The development of plastic deformation in precipitation hardening alloys based on aluminum, Deformation and Fracture of Materials. 10 (2013) 30–39.
Google Scholar
[4]
M.F. Ashby, Work Hardening of Dispersion-hardened Crystals, Phil. Mag. 132, 14 (1966) 1157-1178.
DOI: 10.1080/14786436608224282
Google Scholar
[5]
А. Kelly, R. Nicholson, Precipitation hardening, Metallurgiya, Moscow, 1966.
Google Scholar
[6]
O.I. Daneyko, T.A. Kovalevskaya, N.A. Kulaeva, S.N. Kolupaeva, T.A. Shalygina, V.A. Starenchenko, Influence of the type of phase boundary on the deformational behavior and evolution of a defect subsystem of heterophase alloys with FCC matrix, strengthened by micro- and nanoparticles, Russ. Phys. J. 57, 2 (2014) 21–29.
DOI: 10.1007/s11182-014-0221-y
Google Scholar
[7]
T.A. Kovalevskaya, I.V. Vinogradova, L.E. Popov, Mathematical Modeling of Plastic Deformation of Heterophase Alloys, Tomsk University Press, Tomsk, 1992.
Google Scholar
[8]
T.A. Kovalevskaya, O.I. Daneyko, S.N. Kolupaeva, Influence of incoherent phase on localization crystallographic slip in fcc materials at different temperatures, Bulletin of Tomsk State Univ. of Architecture and Building. 2 (2003) 57–64.
Google Scholar
[9]
T.A. Kovalevskaya, O.I. Daneyko, S.N. Kolupaeva, Influence of initial defect state of dispersion-hardened material on the evolution of defect subsystem in the deformation process, Deformation and Fracture of Materials, 1 (2006) 29–36.
DOI: 10.4028/www.scientific.net/amr.1013.287
Google Scholar
[10]
T.A. Kovalevskaya, S.N. Kolupaeva, O.I. Daneyko, et al., Modeling of the Temperature and Rate Dependence of the Flow Stress and Evolution of a Deformation Defect Medium in Dispersion-Hardened Materials, Bulletin of the Russ. Acad. of Sci.: Phys. 74, 11 (2010) 1588–1593.
DOI: 10.3103/s1062873810110080
Google Scholar
[11]
T.A. Kovalevskaya, O.I. Daneyko, S.N. Kolupaeva, Influence of scale characteristics of the hardening phase on regularities of plastic deformation of dispersion-hardened materials, Bulletin of the Russ. Acad. of Sci.: Phys. 68, 10 (2004) 1412–1418.
Google Scholar
[12]
T.A. Kovalevskaya, S.N. Kolupaeva, O.I. Daneyko, et al., Influence of scale characteristics of the hardening phase of the defect subsystem evolution in heterophase materials with FCC matrix, Materialovedenie. 8 (2011) 6–11.
DOI: 10.4028/www.scientific.net/amr.1013.287
Google Scholar
[13]
L.E. Popov, S.N. Kolupaeva, O.A. Sergeeva, The strain rate of plastic deformation of the crystal, Mathematical Modeling of Systems and Processes. 5 (1997) 93–104.
Google Scholar
[14]
L.E. Popov, V.S. Kobytev, T.A. Kovalevskaya, The concept of hardening and dynamic recovery in the theory of of plastic deformation, Russ. Phys. J. 6 (1982) 56–82.
Google Scholar
[15]
O.I. Daneyko, T.A. Kovalevskaya, S.N. Kolupaeva, et al., Effect of strain rate on strain hardening and evolution of defect subsystem in heterophase materials with FCC matrix, Russ. Phys. J. 52, 9/2 (2009) 125–131.
DOI: 10.4028/www.scientific.net/amr.1013.287
Google Scholar
[16]
O.I. Daneyko, T.A. Kovalevskaya, S.N. Kolupaeva, et al., Effect of temperature and strain rate on the evolution of the dislocation structure of dispersion-strengthened material with FCC matrix, Russ. Phys. J. 54, 9 (2011) 37–40.
DOI: 10.1007/s11182-012-9707-7
Google Scholar
[17]
T.A. Kovalevskaya, S.N. Kolupaeva, O.I. Daneyko, et al., Mathematical modeling of strain hardening of heterophase materials with nanoscale strengthening particles, Deformation and Fracture of Materials. 12 (2010) 5–9.
DOI: 10.1134/s0036029511100089
Google Scholar