Atomistic Simulation of the Self-Diffusion in Very Thin Cu (001) Film by Using MAEAM

Abstract:

Article Preview

The self-diffusion in very thin Cu (001) film that formed by 2~11 atomic layers have been studied by using modified analytic embedded atom method (MAEAM) and a molecular dynamic (MD) simulation. The vacancy formation is the most easily in of Cu (001) thin film formed by any layers. The vacancy formation energy 0.5054eV in of the Cu (001) thin film formed by layers is the highest in all the values in the ones that formed by layers. The vacancy in and 3 is easily migrated to layer, and the vacancy in is easily migrated in intra-layer, and the vacancy in is easily migrated to when the corresponding atomic layer is existed. The vacancy formation and diffusion will not be affected by the atomic layer when the Cu (001) thin film is formed by more than ten layers ().

Info:

Periodical:

Edited by:

Z.S. Liu, L.P. Xu, X.D. Liang, Z.H. Wang and H.M. Zhang

Pages:

37-41

Citation:

Y. N. Wen et al., "Atomistic Simulation of the Self-Diffusion in Very Thin Cu (001) Film by Using MAEAM", Advanced Materials Research, Vol. 1015, pp. 37-41, 2014

Online since:

August 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] R.W. Hoffman, In: Wilsdorf HGF, editor. Thin films. Metals Park(OH): American Society of Metals; (1964).

[2] H. Mizubayashi, K. Fujita, K. Fujiwara, H. Tanimoto, J. Metastable Nanocrystalline Mater. 24-25 (2005) 61.

[3] N. Yagi, A. Ueki, H. Mizubayashi, H. Tanimoto, J. Metastable Nanocrystalline Mater. 24-25 (2005) 503.

[4] B.S. Berry, A.C. Pritchet, J. Phys. 42 (1981) C5-1111.

[5] S. Sakai, H. Tanimoto, K. Otsuka, T. Yamada, Y. Koda, E. Kita, H. Mizubayashi, Scripta Mater. 45 (2001) 1313.

[6] M.J. Kobrinsky, C.V. Thompson, J. Appl. Phys. 89 (2001) 91.

[7] D. Gan, P.S. Huang, J. Leu, J. Maiz, T. Scherban, J. Appl. Phys. 97 (2005) 103531.

[8] J. Peng, V. Ji, J.M. Zhang, W. Seiler. Materials Science Forum. 524-525 (2006) 595.

[9] K.N. Tu, J. Appl. Phys. 94 (2003) 5451.

[10] C.S. Hau-Riege, Microelectron. Reliability 44 (2004) 195.

[11] W.Y. Hu, M. Fukumoto. Modeling Simu. Mater. Sci. Eng., 10 (2002) 707.

[12] W.Y. Hu, B.W. Zhang, B.Y. Huang, et al. J. Phys. : Cond. Matt., 13(6) (2001) 1193.

[13] W.Y. Hu, B.W. Zhang, X.L. Shu, et al. J. Mater. Sci. & Tech., 15 (1999) 336.

[14] H.Q. Deng, W.Y. Hu, X.L. Shu, et al. Appl. Surf. Sci., 221 (2004) 408.

[15] R.A. Johnson. Phys. Rev. B, 39 (1988) 3924.

[16] R.A. Johnson. Phys. Rev. B, 39 (1989) 12554.

[17] R.A. Johnson. Phys. Rev. B, 41 (1990) 9717.

[18] S.M. Foiles, M.I. Baskes, M.S. Daw. Phys. Rev. B, 33 (1986) 7983.

[19] S.M. Foiles, M.S. Daw. Phys. Rev. B, 38 (1988) 12643.

[20] F.S. Liu, W.Y. Hu, H.Q. Deng, et al., Modelling Simul. Mater. Sci. Eng., 18 (2010) 045010.

[21] F.S. Liu, W.Y. Hu, H.Q. Deng, et al., Computational Materials Science. 47 (2009) 505.

[22] F.S. Liu, W.Y. Hu, H.Q. Deng, et al., Nuclear Instruments and Methods in Physics Research Section B. 267 (2009) 3267.

[23] B.W. Zhang, Y.F. Ouyang, Phys. Rev. B, 48 (1993) 3022.

[24] B.W. Zhang, Y.F. Ouyang, S.Z. Liao, Z.P. Jin, Phys. B, 262 (1999) 218.

[25] X.L. Shu, Study on the physical properties, point defects and atomic diffusion in intermetallics by a modified analytic EAM model, Ph.D. Dissertation, 2001, Hunan University, Changsha, P. R. China.

[26] C.J. Smithells, in: E. A. Brandes (Ed. ), Smithshells Metals Reference Book, sixth ed, Butterworths, London, (1983).