Atomistic Simulation of the Self-Diffusion in Very Thin Cu (001) Film by Using MAEAM

Article Preview

Abstract:

The self-diffusion in very thin Cu (001) film that formed by 2~11 atomic layers have been studied by using modified analytic embedded atom method (MAEAM) and a molecular dynamic (MD) simulation. The vacancy formation is the most easily in of Cu (001) thin film formed by any layers. The vacancy formation energy 0.5054eV in of the Cu (001) thin film formed by layers is the highest in all the values in the ones that formed by layers. The vacancy in and 3 is easily migrated to layer, and the vacancy in is easily migrated in intra-layer, and the vacancy in is easily migrated to when the corresponding atomic layer is existed. The vacancy formation and diffusion will not be affected by the atomic layer when the Cu (001) thin film is formed by more than ten layers ().

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-41

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.W. Hoffman, In: Wilsdorf HGF, editor. Thin films. Metals Park(OH): American Society of Metals; (1964).

Google Scholar

[2] H. Mizubayashi, K. Fujita, K. Fujiwara, H. Tanimoto, J. Metastable Nanocrystalline Mater. 24-25 (2005) 61.

Google Scholar

[3] N. Yagi, A. Ueki, H. Mizubayashi, H. Tanimoto, J. Metastable Nanocrystalline Mater. 24-25 (2005) 503.

DOI: 10.4028/www.scientific.net/jmnm.24-25.503

Google Scholar

[4] B.S. Berry, A.C. Pritchet, J. Phys. 42 (1981) C5-1111.

Google Scholar

[5] S. Sakai, H. Tanimoto, K. Otsuka, T. Yamada, Y. Koda, E. Kita, H. Mizubayashi, Scripta Mater. 45 (2001) 1313.

DOI: 10.1016/s1359-6462(01)01167-8

Google Scholar

[6] M.J. Kobrinsky, C.V. Thompson, J. Appl. Phys. 89 (2001) 91.

Google Scholar

[7] D. Gan, P.S. Huang, J. Leu, J. Maiz, T. Scherban, J. Appl. Phys. 97 (2005) 103531.

Google Scholar

[8] J. Peng, V. Ji, J.M. Zhang, W. Seiler. Materials Science Forum. 524-525 (2006) 595.

Google Scholar

[9] K.N. Tu, J. Appl. Phys. 94 (2003) 5451.

Google Scholar

[10] C.S. Hau-Riege, Microelectron. Reliability 44 (2004) 195.

Google Scholar

[11] W.Y. Hu, M. Fukumoto. Modeling Simu. Mater. Sci. Eng., 10 (2002) 707.

Google Scholar

[12] W.Y. Hu, B.W. Zhang, B.Y. Huang, et al. J. Phys. : Cond. Matt., 13(6) (2001) 1193.

Google Scholar

[13] W.Y. Hu, B.W. Zhang, X.L. Shu, et al. J. Mater. Sci. & Tech., 15 (1999) 336.

Google Scholar

[14] H.Q. Deng, W.Y. Hu, X.L. Shu, et al. Appl. Surf. Sci., 221 (2004) 408.

Google Scholar

[15] R.A. Johnson. Phys. Rev. B, 39 (1988) 3924.

Google Scholar

[16] R.A. Johnson. Phys. Rev. B, 39 (1989) 12554.

Google Scholar

[17] R.A. Johnson. Phys. Rev. B, 41 (1990) 9717.

Google Scholar

[18] S.M. Foiles, M.I. Baskes, M.S. Daw. Phys. Rev. B, 33 (1986) 7983.

Google Scholar

[19] S.M. Foiles, M.S. Daw. Phys. Rev. B, 38 (1988) 12643.

Google Scholar

[20] F.S. Liu, W.Y. Hu, H.Q. Deng, et al., Modelling Simul. Mater. Sci. Eng., 18 (2010) 045010.

Google Scholar

[21] F.S. Liu, W.Y. Hu, H.Q. Deng, et al., Computational Materials Science. 47 (2009) 505.

Google Scholar

[22] F.S. Liu, W.Y. Hu, H.Q. Deng, et al., Nuclear Instruments and Methods in Physics Research Section B. 267 (2009) 3267.

Google Scholar

[23] B.W. Zhang, Y.F. Ouyang, Phys. Rev. B, 48 (1993) 3022.

Google Scholar

[24] B.W. Zhang, Y.F. Ouyang, S.Z. Liao, Z.P. Jin, Phys. B, 262 (1999) 218.

Google Scholar

[25] X.L. Shu, Study on the physical properties, point defects and atomic diffusion in intermetallics by a modified analytic EAM model, Ph.D. Dissertation, 2001, Hunan University, Changsha, P. R. China.

Google Scholar

[26] C.J. Smithells, in: E. A. Brandes (Ed. ), Smithshells Metals Reference Book, sixth ed, Butterworths, London, (1983).

Google Scholar