Evaluation of the Fatigue Linear Damage Accumulation Rule for Aeronautical CFRP Using Artificial Neural Networks

Article Preview

Abstract:

New optimized aerospace structures use composite materials for critical components and subsystems which make essential the knowledge of their fatigue properties. In the present work, the conventional methodology based on linear damage accumulation rules, applied to determine the fatigue life of structures subjected to spectral loads was evaluated for an aeronautical Carbon Fiber Reinforced Epoxy composite material. A test program has been performed to obtain the classical S-N curves at different stress ratios. Constant life diagrams, CLDs, where determined by means of Artificial Neural Networks due to the absence of consistent models for composites. A series of coupons have been tested until failure with a modified version of the standard FALSTAFF load sequence and were compared to the theoretical damage index calculated based on the conventional linear damage accumulation rule. The obtained results show non-conservative predictions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-13

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Baker, S. Dutton, D. Kelly: Composite Materials for Aircraft Structures, Second edition. (AIAA Education Series. American Institute of Aeronautics and Astronautics, 2004).

Google Scholar

[2] N. L Post, S.W. Case, J.J. Lesko: Int. J. of Fatigue Vol. 30 (2008), p.2064-(2086).

Google Scholar

[3] A.P. Vassilopoulos, T. Keller: Fatigue of Fiber-reinforced Composites (Springer, 2011).

Google Scholar

[4] ASTM E 1049-85: Standard practices for cycle counting in fatigue analysis, in: Annual Book of ASTM Standards, Vol. 03. 01 (1999), pp.710-718.

Google Scholar

[5] A. Nieslony, Mech. Syst. Signal Pr. Vol. 23 (2009), pp.2712-2721.

Google Scholar

[6] MIL-HDBK-5G-V2. Metallic materials and elements for aerospace vehicles structures. Vol. 2. (Military handbook. 1994).

Google Scholar

[7] E. Castillo, A. Fernández-Canteli, R. Koller, M.L. Ruiz-Ripoll, A. García, Probabilist. Eng. Mech., Vol. 24 (2009), pp.199-209.

Google Scholar

[8] M.H. Beale, M.T. Hagan, H.B. Demuth. Neural Networks Toolbox, User's Guide. R2014a (Mathworks, 2014).

Google Scholar

[9] Z. Zhang, K. Friedrich. Compos. Sci. Technol. Vol. 63 (2003), p.2029-(2044).

Google Scholar

[10] J.A. Lee, D.P. Almond, B. Harris. Compos. Part A-Appl. S. Vol. 30 (1999), pp.1159-1169.

Google Scholar

[11] A.P. Vassilopoulos, E.F. Georgopoulos, V. Dionysopoulos. Int. J. Fatigue. Vol. 29 (2007), pp.20-29.

Google Scholar

[12] Y. Al-Assaf, H. El Kadi, Compos. Struct. Vol 53 (2001), pp.65-71.

Google Scholar

[13] IHS ESDU 97018: Standard fatigue loading sequences.

Google Scholar

[14] P. Zuluaga, M. Frövel, R. Restrepo, R. Trallero, R. Atienza, J.M. Pintado, T. Belenguer,F. Salazar, Key Eng. Mat. Vol. 569 (2013), pp.88-95.

DOI: 10.4028/www.scientific.net/kem.569-570.88

Google Scholar

[15] R. Trallero: Validación experimental del método de castillo sobre un material compuesto polimérico multidireccional sometido a carga cíclica de compresión, Ph. D Thesis, (Alfonso X el Sabio University-Polytechnic School, 2013).

Google Scholar