Enzymatic Degradation of Epoxy Resins: An Approach for the Recycling of Carbon Fiber Reinforced Polymers

Article Preview

Abstract:

Carbon fiber reinforced polymers (CFRPs), particularly epoxy resins, are increasingly applied in innovative products nowadays. At the end of the life cycle of those products, CFRP waste has to be disposed in an ecological way. As of today, no energy effective recycling method is available to recover the valuable carbon fibers in a good quality. The presented study aims to exploit the ability of biological systems in order to efficiently and specifically degrade the polymer and release carbon fibers with minimal material strain. In a first approach environmental microorganisms for degrading the polymer component of epoxy composites into small fragments have to be identified. An analytical method will be developed to identify and quantify the polymer degradation. In a following step, the enzymes that are produced by the microorganisms and are essential for the polymer degradation will be identified, cloned, produced in a high amount and characterized in CFRP recycling studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-136

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Witten, B. Jahn, Composites-Marktbericht 2013, Industrievereinigung verstärkte Kunststoffe und Carbon Composites, (2013).

Google Scholar

[2] The Council of the European Union, Council Directive 1999/31/EC, Official Journal of the European Union L 182 (1999) 1-19.

Google Scholar

[3] The Council of the European Union, Council Directive 2000/53/EC, Official Journal of the European Union L 269 (2000) 34-42.

Google Scholar

[4] European Parliament and the Council, Directive 2008/98/EC, Official Journal of the European Union L 312 (2008) 3-30.

Google Scholar

[5] A. Hedlund-Aström, Model for end of life treatment of polymer composite materials, dissertation, Stockholm, (2005).

Google Scholar

[6] G. Marsh, Carbon recycling: A soluble problem, Reinforced Plastics 53 (2009) 22-27.

DOI: 10.1016/s0034-3617(09)70149-3

Google Scholar

[7] M. Tötzke, Untersuchungen zum Recycling von kohlefaserverstärkten Kunststoffen durch Depolymerisation im Metallbad, Weißensee Verlag, Halle-Wittenberg, Berlin, (2005).

Google Scholar

[8] M. A. Nahil, P. T. Williams, Recycling of carbon fibre reinforced polymeric waste for the production of activated carbon fibres, Journal of Analytical and Applied Pyrolysis 91(2011) 67-75.

DOI: 10.1016/j.jaap.2011.01.005

Google Scholar

[9] L. Meyer, K. Schulte, E. Grove-Nielsen, CFRP-Recycling following a pyrolysis route: Process optimization and potentials, Journal of Composite Materials 43 (2009) 1121-1132.

DOI: 10.1177/0021998308097737

Google Scholar

[10] A. M. Cunliffe, N. Jones, P. T. Williams, Recycling of fibre-reinforced polymeric waste by pyrolysis: Thermo-gravimetric and bench-scale investigations, Journal of Analytical and Applied Pyrolysis 70 (2003) 315-338.

DOI: 10.1016/s0165-2370(02)00161-4

Google Scholar

[11] A. Greco, A. Mafezzoli, G. Buccoliero, F. Caretto, G. Cornacchia, Thermal and chemical treatments of recycled carbon fibres for improved adhesion to polymeric matrix, Journal of Composite Materials 74 (2012) 369-377.

DOI: 10.1177/0021998312440133

Google Scholar

[12] R. Piñero-Hernanz, C. Dodds, J. Hyde, J. García-Serna, M. Poliakoff, E. Lester, M. J. Cocero, S. Kingman, S. Pickering, K. H. Wong, Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water, Composites Part A: Applied Science and Manufacturing 39 (2008).

DOI: 10.1016/j.compositesa.2008.01.001

Google Scholar

[13] L. Yuyan, S. Guohua, M. Linghui, Recycling of carbon fibre reinforced composites using water in subcritical conditions, Materials Science and Engineering: A 520 (2009) 179-183.

DOI: 10.1016/j.msea.2009.05.030

Google Scholar

[14] S. Pimenta, S. T. Pinho, Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook, Waste Management 31 (2011) 378-392.

DOI: 10.1016/j.wasman.2010.09.019

Google Scholar

[15] S. Pickering, Recycling technologies for thermoset composite materials-current status, Composites Part A: Applied Science and Manufacturing 37 (2006) 1206-1215.

DOI: 10.1016/j.compositesa.2005.05.030

Google Scholar

[16] R. Fukui, T. Odai, H. Zushi, I. Osawa, K. Uzawa, J. Takahashi, Recycle of carbon fiber reinforced plastics for automotive application, 9th Japan international SAMPE symposium, (2005).

Google Scholar

[17] T. Kirk, Enzymatic combustion,: The microbial degradation of lignin, Annual Review of Microbiology 41 (1987) 465-505.

Google Scholar

[18] T. Nakajima-Kambe, Y. Shigeno-Akutsu, N. Nomura, F. Onuma, T. Nakahara, Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes, Applied Microbiology and Biotechnology 51 (1999) 134-140.

DOI: 10.1007/s002530051373

Google Scholar

[19] T. Brueckner, A. Eberl, S. Heumann, M. Rabe, G. Güebitz, Enzymatic and chemical hydrolysis of poly(ethyleneterephthalate) fabrics, Journal of Polymer Science: Part A: Polymer Chemistry 46 (2008) 6435-6443.

DOI: 10.1002/pola.22952

Google Scholar

[20] J. -D. Gu, T. Ford, K. Thorp und R. Mitchell, Microbial growth on fiber reinforced composite materials, International Biodeterioration & Biodegradation 37 (1996) 197-204.

DOI: 10.1016/s0964-8305(96)00035-2

Google Scholar

[21] K. Welzel, Einfluss der chemischen Struktur auf die enzymatische Hydrolyse von Polyester-Nanopartikeln, dissertation, Braunschweig, (2003).

Google Scholar