Interaction of Load and Residual Stresses in Sintered 1.3344 High Speed Steel

Article Preview

Abstract:

Compressive residual stresses enhance cold forging tool lifetime. These stresses can be induced during the grinding process of the tool manufacturing. To use residual stresses induced by grinding it must be understood how load and residual stresses interact in ground and unground sub-surface zones. This has been studied with specimen from powder metallurgically produced 1.3344 high-speed steel. Residual stresses in the specimen where measured through x-ray diffraction in ground and unground conditions and under various applied load stresses. Residual stresses and load stresses sum up directly proportional at lower stresses, while at higher stresses a saturated stress state is achieved and the whole material deforms plastically.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-152

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Salfeld, R. Krimm, S. Hübner, T. Matthias, M. Vucetic, Sheet-Bulk Metal Forming of Symetric and Asymetric Parts, In: Advanced Materials Research Vol. 769, Trans Tech Publications, Switzerland, 2013, pp.229-236.

DOI: 10.4028/www.scientific.net/amr.769.229

Google Scholar

[2] R. Plettke, S. Opel, Investigations on orbital forming of sheet metals to manufacture tailored blanks with a defined sheet thickness variation, In: Advanced Materials Research Vol. 769, , Trans Tech Publications, Switzerland, 2013, pp.157-164.

DOI: 10.4028/www.scientific.net/amr.769.157

Google Scholar

[3] M. Merklein, J. Koch, S. Opel, T. Schneider, Fundamental investigations on the material flow at combined sheet and bulk metal forming processes, CIRP Annals – Manufacturing Technology, Issue 60, 2011, pp.283-286.

DOI: 10.1016/j.cirp.2011.03.146

Google Scholar

[4] K. Lange, M. Kammerer, K. Pöhlandt, J. Schöck, Fließpressen, 1. Edition, Berlin, Springer, (2008).

DOI: 10.1007/978-3-540-30910-9

Google Scholar

[5] B. Denkena, D. Boehnke, L. de León, Machining induced residual stress in structural aluminum parts, Production Engineering, Volume 2, Issue 3, 2008, pp.247-253.

DOI: 10.1007/s11740-008-0097-1

Google Scholar

[6] B. Denkena, B. Breidenstein, Depth resolved residual stress measurements of coated carbide cutting inserts, In: Proceedings of 5th International Conference THE, Coatings in Manufacturing Engineering; EEΔM, Aristoteles University of Thessaloniki and PCCM, 2005: pp.285-294.

Google Scholar

[7] M. Merklein, K. Andreas, U. Engel, Influence of machining process on residual stresses in the surface of cemented carbides, 1th CIRP Conference on Surface Integrity (CSI), Procedia Engineering 19, 2011, p.252 – 257.

DOI: 10.1016/j.proeng.2011.11.108

Google Scholar

[8] B. Denkena, L. de Leon, A. Turger, L. Behrens, Prediction of contact conditions and theoretical roughness in manufacturing of complex implants by toric grinding tools, International Journal of Machine Tools & Manufacture 50, 2010, pp.630-636.

DOI: 10.1016/j.ijmachtools.2010.03.008

Google Scholar

[9] W. S. Lau, M. Wang, W. B. Lee, A simple method of eliminating residual tensile stresses in the grinding of low carbon steels, International Journal of Machine Tools and Manufacture, Volume 31 No. 3, 1991, pp.425-434.

DOI: 10.1016/0890-6955(91)90087-j

Google Scholar

[10] C. Eichenseer, I. Wittmann, C. Hartig, G. A. Schneider, N. Schell, W. Hintze, In situ measurement of lattice strains in mixed ceramic cutting tools under thermal and mechanical loads using synchrotron radiation, Production Engineering, Volume 7, Issue 2-3, 2013, pp.283-289.

DOI: 10.1007/s11740-012-0426-2

Google Scholar

[11] M.D. Taylor, K.S. Choi, X. Sun, D.K. Matlock, C.E. Packard, L. Xu, F. Barlat, Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels, Materials Science & Engineering A, Issue 597, Amsterdam, Elsevier, 2014, pp.431-439.

DOI: 10.1016/j.msea.2013.12.084

Google Scholar

[12] B. Eigenmann, E. Macherauch, Röntgenographische Untersuchungen von Spannungszuständen in Werkstoffen, Teil I, Materialwissenschaft und Werkstoffstechnik. Issue 3, 1995, pp.148-160.

DOI: 10.1002/mawe.19950260310

Google Scholar

[13] B. Eigenmann, E. Macherauch, Röntgenographische Untersuchungen von Spannungszuständen in Werkstoffen, Teil III, Materialwissenschaft und Werkstoffstechnik. Issue 9, 1996, pp.426-437.

DOI: 10.1002/mawe.19960270907

Google Scholar

[14] B. Breidenstein, Oberflächen und Randzonen hoch belasteter Bauteile, Berichte aus dem IFW Issue 11, ed. Berend Denkena, Garbsen, Produktionstechnisches Zentrum Hannover GmbH, (2011).

Google Scholar