[1]
E Brinksmeier, M. Garbrecht, D. Meyer, J. Dong, Surface hardening by strain induced martensitic transformation, Prod. Eng. Res. Devel. 2/2 (2008) 109-116.
DOI: 10.1007/s11740-007-0060-6
Google Scholar
[2]
E. Brinksmeier, M. Garbrecht, D. Meyer, Cold surface hardening, CIRP Ann. 57/1 (2008) 541-544.
DOI: 10.1016/j.cirp.2008.03.100
Google Scholar
[3]
D. Umbrello, Z. Pu, S. Caruso, J.C. Outeiro, A.D. Jayal, O.W. Dillon Jr., I.S. Jawahir, The effects of cryogenic cooling on surface integrity in hard machining, 1st CIRP Conference on Surface Integrity, Proc. Eng. 19 (2011) 371-376.
DOI: 10.1016/j.proeng.2011.11.127
Google Scholar
[4]
V. Dhokia, A. Shokrani, D. Correa Paulino, S.T. Newman, Effects of cryogenic cooling on the surface quality and tool wear in end-milling 6061-T6 Aluminium, 22nd International Conference on Flexible Automation and Intelligent Manufacturing, (2012).
Google Scholar
[5]
B. Karpuschewski, T. Emmer, K. Schmidt, M. Petzel, Cryogenic wet-ice blasting – process conditions and possibilities, CIRP Ann. 62/1 (2013) 319-322.
DOI: 10.1016/j.cirp.2013.03.102
Google Scholar
[6]
D. Biermann, H. Hartmann, Reduction of burr formation in drilling using cryogenic process cooling, 45th CIRP Conference on Manufacturing Systems, Proc. CIRP 3 (2012) 85-90.
DOI: 10.1016/j.procir.2012.07.016
Google Scholar
[7]
E. Abele, B. Schramm, Using PCD for machining CGI with a CO2 coolant system, Prod. Eng. Res. Devel. 2 (2008) 165-169.
DOI: 10.1007/s11740-008-0104-6
Google Scholar
[8]
A.D. Jayal, F. Badurdeen, O.W. Dillon Jr., I.S. Jawahir, Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels, CIRP J. Manuf. Sci. Technology 2/3 (2010) 144-152.
DOI: 10.1016/j.cirpj.2010.03.006
Google Scholar
[9]
P. Mayer, R. Skorupski, M. Smaga, D. Eifler, J.C. Aurich, Deformation induced surface hardening when turning metastable austenitic steel AISI 347 with different cryogenic cooling strategies, 6th CIRP Conference on High Performance Cutting, Proc. CIRP, 2014, dx. doi. org/10. 1016/j. procir. 2014. 03. 097.
DOI: 10.1016/j.procir.2014.03.097
Google Scholar
[10]
J.C. Aurich, P. Mayer, B. Kirsch, D. Eifler, M. Smaga, R. Skorupski, Characterization of deformation induced surface hardening during cryogenic turning of AISI 347, CIRP Ann., 2014, dx. doi. org/10. 1016/j. cirp. 2014. 03. 079.
DOI: 10.1016/j.cirp.2014.03.079
Google Scholar
[11]
R. Skorupski, M. Smaga, D. Eifler, P. Mayer, J.C. Aurich, Phase transformation as a result of mechanical loading and turning of metastable austenitic steels, TMS13 Proc. (2013) 877-884.
DOI: 10.1002/9781118663547.ch109
Google Scholar
[12]
F. Hahnenberger, M. Smaga, D. Eifler, Microstructural investigation of the fatigue behavior and phase transformation in metastable austenitic steels at ambient and lower temperatures, Int. J. Fatigue, 2012, dx. doi. org/10. 1016/j. ijfatigue. 2012. 07. 004.
DOI: 10.1016/j.ijfatigue.2012.07.004
Google Scholar
[13]
T. Angel, Formation of martensite in austenitic stainless steels – effects of deformation, temperature and composition, J. Iron Steel Inst. 177/1 (1954) 165-174.
Google Scholar
[14]
D. Biermann, F. Kahleyß, M. Heilmann, Bohren mit CO2-Prozesskühlung, VDI-Z Integrierte Produktion 19/7-8 (2007) 78-80.
Google Scholar
[15]
M. Garbrecht, Mechanisches Randschichthärten in der Fertigung, German Dr. -Ing. Dissertation, University of Bremen, Shaker-Verlag, Aachen, (2006).
Google Scholar
[16]
J. Talonen, P. Aspegren, H. Hänninen, Comparison of different methods for measuring strain induced α'-martensite content in austenitic steels, Mat. Sci. Technology 20 (2004) 1506-1512.
DOI: 10.1179/026708304x4367
Google Scholar