Analysis and Visualisation of the Positioning Accuracy and Underlying Effects of Industrial Robots

Article Preview

Abstract:

Industrial robots are usually not suitable for high-precision applications due to their limited absolute accuracy. This issue can be solved by calibrating the robot using an adequate model of its kinematic chain and physical behaviour. However, this presupposes a deep understanding of the effects that influence the absolute accuracy and repeatability of the robot. This paper outlines a set of experiments to gain this knowledge by analysing the effects that limit the precision and furthermore presents a way for the proper visualisation of the consequent errors. The investigation includes a range of robots with different characteristics to gather valid and preferably universal information for off-the-shelf industrial robots.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-22

Citation:

Online since:

September 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IFR Statistical Department, World robotics 2013: Industrial robots, (2013).

Google Scholar

[2] ISO-9283, Manipulating Industrial Robots – Performance Criteria and Related Test Methods, Beuth, Berlin, (1999).

Google Scholar

[3] VDI-2861, Kenngrößen für Industrieroboter, VDI-Verlag, Düsseldorf, (1988).

Google Scholar

[4] P.S. Shiakolas, K.L. Conrad, T.C. Yih, On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots, International journal of modelling and simulation 22 (2002), 245–254.

DOI: 10.1080/02286203.2002.11442246

Google Scholar

[5] U. Gerstmann, Robotergenauigkeit: Der Getriebeeinfluss auf die Arbeits- und Positionsgenauigkeit, Dissertation, VDI-Verlag, Düsseldorf, (1991).

Google Scholar

[6] A.C. Bittencourt, E. Wernholt, S. Sander-Tavallaey, T. Brogårdh, An extended friction model to capture load and temperature effects in robot joints, in: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), 2010, p.6161.

DOI: 10.1109/iros.2010.5650358

Google Scholar

[7] G. Reinhart, R. -G. Gräser, R. Klingel, Qualification of Standard Industrial Robots to Cope with Sophisticated Assembly Tasks, CIRP Annals - Manufacturing Technology 47 (1998) 1–4.

DOI: 10.1016/s0007-8506(07)62772-3

Google Scholar

[8] U. Wiest, Kinematische Kalibrierung von Industrierobotern, Dissertation, Shaker Verlag, Aachen, (2001).

Google Scholar

[9] T. Bongardt, Methode zur Kompensation betriebsabhängiger Einflüsse auf die Absolutgenauigkeit von Industrierobotern, Dissertation, Utz Verlag, München, (2004).

Google Scholar

[10] A.C. Bittencourt, P. Axelsson, Modeling and Experiment Design for Identification of Wear in a Robot Joint Under Load and Temperature Uncertainties Based on Friction Data, IEEE/ASME Transactions on Mechatronics 19 (2014) 1694–1706.

DOI: 10.1109/tmech.2013.2293001

Google Scholar

[11] M. Ruderman, F. Hoffmann, T. Bertram, Modeling and Identification of Elastic Robot Joints With Hysteresis and Backlash, IEEE Trans. Ind. Electron. 56 (2009) 3840–3847.

DOI: 10.1109/tie.2009.2015752

Google Scholar

[12] H. Chen, T. Fuhlbrigge, S. Choi, J. Wang, X. Li, Practical industrial robot zero offset calibration, in: 2008 IEEE International Conference on Automation Science and Engineering (CASE 2008), 2008, p.516–521.

DOI: 10.1109/coase.2008.4626417

Google Scholar