Gear Hobbing – Research Activities and State of the Art

Article Preview

Abstract:

In this presentation at first the overall economic importance of gear manufacturing is highlighted. Main application areas of gear boxes are analysed with regard to their future orientation, namely the automotive industry, the wind energy sector, aircraft applications as well as machine tools. Still by far the most important and dominating technology for gear manufacturing is gear hobbing. This process is briefly explained and main characteristics are mentioned. Besides the industrial aspects there is also a strong attention for a better understanding of the fundamental aspects of gear hobbing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-12

Citation:

Online since:

September 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. McGuinn: The global gear industry, Gear technology 05/2011, 33-38.

Google Scholar

[2] VDMA, Präsentation Antriebstechnik, (2014).

Google Scholar

[3] VDW, Die deutsche Werkzeugmaschinenindustrie im Jahr 2012, Frankfurt, (2012).

Google Scholar

[4] Information on http: /www. oica. net/category/production-statistics/ [June 2014].

Google Scholar

[5] Y. Matsuda, Toyota's Powertrain Strategy for Developed and Emerging Markets, 32. Internationales Wiener Motorensymposium 2011, pp.31-46.

Google Scholar

[6] Global wind energy council, Information on http: /www. gwec. net/global-figures/wind-energy-global-status [June 2014].

Google Scholar

[7] N.N., World of wind Energy, Cleantech magazine, Issue 2 – 2012, Cleantech Investor Ltd.

Google Scholar

[8] N.N., Pratt & Whitney Geared Turbofan Products, Canada (2013).

Google Scholar

[9] Information on http: /www. bloomberg. com/news/2014-02-26/rolls-royce-unveils-new-engine-for-future-boeing-airbus-jets. html [June 2014].

Google Scholar

[10] G. Sulzer, Leistungssteigerung bei der Zylinderradherstellung durch systematische Erfassung der Zerspankinematik, Dr. -Ing. Diss., RWTH Aachen, (1973).

Google Scholar

[11] M. Hipke, Wälzfräsen mit pulvermetallurgisch hergestelltem Schnellarbeitsstahl, Dr. -Ing. Diss., University Magdeburg, (2011).

Google Scholar

[12] B. Karpuschewski, H-J. Knoche, M. Hipke, M. Beutner, High Performance Gear Hobbing with powder-metallurgical High-Speed-Steel, Procedia CIRP, Volume 1, 2012, pp.196-201, ISSN 2212-8271.

DOI: 10.1016/j.procir.2012.04.034

Google Scholar

[13] M. Wengler, FVA 581-II, Hochleistungswälzfräsen mit Hartmetall, University Magdeburg, (2013).

Google Scholar

[14] Stark, S.; Beutner, M.; Lorenz, F.; Lampke, T.; Karpuschewski, B.; Halle, T.: Experimental and numerical determination of cutting forces and temperatures in gear hobbing. In: Key Engineering Materials - Machining and Cutting, Trans Tech Publications, ESAFORM 2012, 13. -14. 03. 2012, Erlangen.

DOI: 10.4028/www.scientific.net/kem.504-506.1275

Google Scholar

[15] B. Karpuschewski, M. Beutner, R. Frohmüller, M. Köchig, High speed temperature measurement in gear hobbing: Part I – design, concept and physical operation mode of the infrared-camera, Production Engineering, Volume 8, Issue 1-2 , pp.73-79.

DOI: 10.1007/s11740-013-0514-y

Google Scholar

[16] Stark, S.; Beutner, M.; Lorenz, F.; Uhlmann, S.; Karpuschewski, B.; Halle, T.: Heat flux and temperature distribution in gear hobbing operations. In: Procedia CIRP Volume 8, 2013, Pages 456–461, 14th CIRP Conference on Modeling of Machining Operations, CIRP CMMO 2013, 13. - 14. July 2013, Turin.

DOI: 10.1016/j.procir.2013.06.133

Google Scholar

[17] M. Köchig, AIF-IGF 17577, Verschleißeinfluss des Werkzeugprofils beim Wälzfräsen, University Magdeburg, (2013).

Google Scholar

[18] K. Kaiser, Grundlagenuntersuchungen zur Technologie der Feinbearbeitung einsatzgehärteter Verzahnungen mit definierter Schneide. Dissertation, Aachen, (1992).

Google Scholar

[19] M. Vüllers, Hartfeinbearbeitung von Verzahnungen mit beschichteten Hartmetallwerkzeugen, Dr. -Ing. Diss., RWTH Aachen, (1998).

Google Scholar

[20] J. Schmidt, Mechanische und thermische Wirkungen beim Drehen gehärteter Stähle, Dr. -Ing. Diss., Univ. Hannover, (1999).

Google Scholar

[21] M. Beutner, Chancen von PCBN in der Hartfeinbearbeitung von Zahnrädern durch Schälwälzfräsen – Experimentalstudie für den VDW, University Magdeburg, (2013).

Google Scholar