An Ultrasonic Non-Contact Handling Device from Quartz Glass for Middle and High Temperature Applications

Article Preview

Abstract:

Ultrasonic non-contact handling is used to manipulate surface sensitive and fragile workpieces, e.g. wafers and glass plates, without mechanical contact. While the technology is available forapplications at room temperature, some of the manufacturing processes of products mentioned aboverequire handling at elevated temperatures. To enable this technology for handling in thermal processesan ultrasonic system for increased working temperatures is required. In order to adapt the ultrasonicsystem to the limited working temperature of the actuator, the handling system has to be operated attwo different temperatures. Due to the small change of the Young's modulus over temperature, quartzglass was chosen as material for the components in the high temperature region. The paper presentsthe design and manufacturing of a novel ultrasonic system operated at 790 °C while the actuator iskept at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-38

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Datas et al., NGCPV: A new generation of concentrator photovoltaic cells, modules and systems in: A. Mine (Eds. ), 28th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC 2013. Proceedings, 2013, pp.88-93.

Google Scholar

[2] W. S. Yoo et al., Thermal Behavior of Large-Diameter Silicon Wafers during High-Temperature Rapid Thermal Processing in Single Wafer Furnace, JPN J APPL PHYS 41 (2002) 4442-4449.

DOI: 10.1143/jjap.41.4442

Google Scholar

[3] M.J.A.A. Goris et al., Emitter Diffusion using an IR Belt Furnace in: J. Schmid (Eds. ), Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion, 1998, pp.1523-1525.

Google Scholar

[4] J. Strack et al., Anlage mit Luftkissentransport zur kontaktfreien Erwärmung von Glasscheiben in: HVG-DGG (Eds. ), Referate und Vorträge der 83. Glastech, (2009).

Google Scholar

[5] A. -C. Hladky-Hennion, C. Granger, and G. Haw, Film air bearings generated by ultrasonic vibrations in: IEEE (Eds. ), Proceedings of IEEE Ultrasonics Symposium, 2002, pp.683-686.

DOI: 10.1109/ultsym.2002.1193493

Google Scholar

[6] Y. Hashimoto, Y. Koike, and S. Ueha, Near-field acoustic levitation of planar specimens using flexural vibration, J ACOUST SOC AM 100 (1996) 2057-(2061).

DOI: 10.1121/1.417915

Google Scholar

[7] G. Reinhart, M. F. Zaeh, and J. Zimmermann, Non Contact Handling - Leading to New Visions in Logistics and Assembly, PROD ENGINEER 11 (2004) 153-158.

Google Scholar

[8] G. Reinhart et al., Non-contact Handling and Transportation for Substrates and Microassembly Using Ultrasound-Air-Film-Technology in: SEMI/IEEE (Eds. ), Advanced Semiconductor Manufacturing Conference (ASMC), 2011, pp.1-6.

DOI: 10.1109/asmc.2011.5898208

Google Scholar

[9] J. Li et al., Influence of gas inertia and edge effect on squeeze film in near field acoustic levitation, APPL PHYS LETT 96 (2010) 243507.

DOI: 10.1063/1.3455896

Google Scholar

[10] M. Wiesendanger. Squeeze film air bearings using piezoelectric bending elements. Département de microtechnique. Lausanne: École Polytechnique Fédérale de Lausanne, 23. 02. (2001).

DOI: 10.24295/cpsstpea.2019.00020

Google Scholar

[11] E. A. Neppiras, The pre-stressed piezoelectric sandwich transducer in: (Eds. ), Ultrasonics International 1973: Conference Proceedings, 1973, pp.295-302.

Google Scholar

[12] F. M. Distel and G. Reinhart, Automated Design and Optimization of Rectangular Plate Sonotrodes for Squeeze Film Levitation in: Z. Dimitrovova (Eds. ), Proceedings of 11th Biennial International Conference on Vibration Problems (ICOVP-2013), (2013).

Google Scholar

[13] M. Nad, Ultrasonic horn design for ultrasonic machining technologies, APPL COMP MECH 4 (2010) 79-88.

Google Scholar

[14] Y. Xia et al., Long term vibration monitoring of an RC slab: Temperature and humidity effect, ENG STRUCT 28 (2006) 441-452.

DOI: 10.1016/j.engstruct.2005.09.001

Google Scholar

[15] S. Zhang, C. A. Randall, and T. R. Shrout, High Curie temperature piezocrystals in the BiScO3-PbTiO3 perovskite system, APPL PHYS LETT 83 (2003) 3150.

DOI: 10.1063/1.1619207

Google Scholar

[16] H. Hielscher. Verfahren und Vorrichtung zur Kühlung von Ultraschallwandlern. EP 1 565 905 B1. Dr. Hielscher GmbH. Aug. 24, (2005).

Google Scholar

[17] S. Spinner, Elastic Moduli of Glasses at Elevated Temperatures by a Dynamic Method, J AM CERAM SOC 39 (1956) 113-118.

DOI: 10.1111/j.1151-2916.1956.tb15634.x

Google Scholar

[18] D. Hülsenberg, A. Harnisch, and A. Bismarck, Microstructuring of glasses, Springer, Berlin, (2008).

Google Scholar