A New Approach for the Prediction of Surface and Subsurface Properties after Grinding

Article Preview

Abstract:

This paper presents a diagram of maximum contact zone temperature Tmax versus contact time Δt, based on the analysis of workpiece surface layer properties after cylindrical grinding experiments. Apart from resulting surface layer properties, process quantities (Tmax, normal and tangential grinding forces Fn, Ft) are investigated with reference to the resulting workpiece surface layer state as well. Ground workpieces are analyzed by performing Barkhausen noise level measurements together with subsequent metallographic and X-ray diffraction investigations. By mapping characteristic values Tmax and the contact time Δt to corresponding surface layer properties, a general analysis of workpiece material response to the thermo-mechanical load during grinding is possible.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-196

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Brinksmeier, Prozeß- und Werkstückqualität in der Feinbearbeitung, VDI-Verlag, Düsseldorf, (1991).

Google Scholar

[2] B. Denkena, H. K. Tönshoff, Spanen: Grundlagen, 3. Auflage, Springer DE, Berlin, (2011).

Google Scholar

[3] S. Malkin, Ch. Guo, Grinding Technology: Theory and Applications of Machining with Abrasives, 2. Edition, Industrial Press, New York, (2008).

Google Scholar

[4] M. A. Davies, T. Ueda, R. M'Saoubi, B. Mullany, A. L. Cooke, On The Measurement of Temperature in Material Removal Processes, CIRP Annals - Manufacturing Technology, Volume 56, Issue 2, 2007, pp.581-604.

DOI: 10.1016/j.cirp.2007.10.009

Google Scholar

[5] C. Heinzel, Schleifprozesse verstehen: Zum Stand der Modellbildung und Simulation sowie unterstützender experimenteller Methoden, Shaker Verlag, Aachen, (2009).

Google Scholar

[6] E. Brinksmeier, J. C. Aurich, E. Govekar, C. Heinzel, H. - W. Hoffmeister, F. Klocke, J. Peters, R. Rentsch, D. J. Stephenson, E. Uhlmann, K. Weinert, M. Wittmann, Advances in Modeling and Simulation of Grinding Processes, CIRP Annals - Manufacturing Technology, Volume 55, Issue 2, 2006, pp.667-696.

DOI: 10.1016/j.cirp.2006.10.003

Google Scholar

[7] C. Heinzel, J. Sölter, S. Jermolajev, B. Kolkwitz, E. Brinksmeier, A Versatile Method to Determine Thermal Limits in Grinding, Procedia CIRP, Volume 13, 2014, pp.131-136.

DOI: 10.1016/j.procir.2014.04.023

Google Scholar

[8] M. Duscha, F. Klocke, A. d'Entremont, B. Linke, H. Wegner, Investigation of Temperatures and Residual Stresses in Speed Stroke Grinding via FEA Simulation and Practical Tests, Journal Proceedings in Manufacturing Systems, Vol. 5, 2010, No. 1 / 1-10.

Google Scholar

[9] E. Brinksmeier, C. Heinzel, A. Wilkens, E. Giese, Werkzeugseitige Temperaturmessung beim Schleifen, Jahrbuch Schleifen, Honen, Läppen und Polieren, 64. Ausgabe, Vulkan-Verlag, Essen 2008, pp.224-238.

DOI: 10.1002/maco.19790300419

Google Scholar

[10] M., Sakakura, T. Ohnishi, T. Shinoda, K. Ohashi, S. Tsukamoto, I. Inasaki, Temperature distribution in a workpiece during cylindrical plunge grinding, Production Engineering - Research and Development, Volume 6, Issue 2, 2012, pp.149-155.

DOI: 10.1007/s11740-012-0372-z

Google Scholar

[11] S. Malkin, Ch. Guo, Thermal analysis of grinding, CIRP Annals - Manufacturing Technology, Volume 56, Issue 2, 2007, pp.760-782.

DOI: 10.1016/j.cirp.2007.10.005

Google Scholar

[12] B. Karpuschewski, Mikromagnetische Randzonenanalyse geschliffener einsatzgehärteter Bauteile, VDI-Verlag, Düsseldorf, (1995).

Google Scholar

[13] D. J. Stephenson, T. Jin, Physical Basics in Grinding, 1st European conference on grinding, Edt. K. Werner, F. Klocke, E. Brinksmeier, Fortschrittsberichte, VDI-Verlag, Aachen, 2003, pp.1301-1321.

Google Scholar

[14] M. Duscha, A. Eser, F. Klocke, C. Broeckmann, H. Wegner, A. Bezold, Modeling and Simulation of Phase Transformation during Grinding, Advanced Material Research, Volume 223, 2011, pp.743-753.

DOI: 10.4028/www.scientific.net/amr.223.743

Google Scholar

[15] T. Foeckerer, B. Kolkwitz, C. Heinzel, M. F. Zaeh, Experimental and Numerical Analysis of transient behavior during grind-hardening of AISI 52100, Production Engineering - Research and Development, Volume 6, Issue 6, 2012, pp.559-568.

DOI: 10.1007/s11740-012-0414-6

Google Scholar