Numerical Approach to Determine Natural Strain of Spherical Preforms in Open Die Upsetting

Article Preview

Abstract:

Many parts of today´s world are manufactured by cold forming operations or more precisely by mechanical upsetting such as wheelmounts or bevel gears because cold forming has several advantages compared to other machining operations. Due to size effects, the maximum achievable upset ratio in mechanical upsetting decreases with decreasing size of the work piece, so that upsetting becomes inefficient in micro range. Here, one promising approach is the laser rod end melting process generating a so called preform which allows upset ratios of several hundred within one stage. This preform is subsequently calibrated by a mechanical upsetting process. A numerical simulation showing the open die upsetting process of preforms, modeled with Abaqus, is presented in this work. Results of numerically determined natural strain are compared with an analytical model showing that the analytical model is a reasonable approximation. The maximum achievable average natural strain of preforms in upsetting is experimentally determined to be at least φ*=2.75.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-332

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. v. Bargen et al., Heat Treatment, in: F. Vollertsen (Ed. ), Micro Metal Forming, Springer-Verlag, Heidelberg (2013).

Google Scholar

[2] E. Doege, B. -A. Behrens, Handbuch Umformtechnik, Springer-Verlag, Berlin, 2007, p.500.

Google Scholar

[3] K. Lange, Umformtechnik - Handbuch für Industrie und Wissenschaft, Band 1. Berlin: Springer-Verlag, (2002).

Google Scholar

[4] Y. Qin, Micromanufacturing Engineering and Technology, Elsevier, (2010).

Google Scholar

[5] M. Koc, T. Ozel, Micro-Manufacturing: Design and Manufacturing of Micro-Products, Wiley, Weinheim, (2011).

Google Scholar

[6] F. Vollertsen, Categories of size effects. Prod. Eng. Res. Devel. 2, 2008, pp.377-388.

DOI: 10.1007/s11740-008-0127-z

Google Scholar

[7] B. Kuhfuß, E. Moumi, V. Pipek. Vergleich charakteristischer Einflussgrößen beim Mikro- und Makrorundkneten. 4. Kolloquium Mikroproduktion. BIAS-Verlag, Bremen, 2009, pp.219-228.

Google Scholar

[8] Z. Hu. Analyse des tribologischen Größeneffekts beim Blechumformen. Strahltechnik Bd. 37, eds.: F. Vollertsen, R. Bergmann. BIAS-Verlag, Bremen, (2009).

Google Scholar

[9] A. Meßner, Kaltmassivumformung metallischer Kleinstteile: Werkstoffverhalten, Wirkflächenreibung, Prozessauslegung. Meisenbach Verlag, Bamberg, (1998).

Google Scholar

[10] F. Vollertsen, R. Walther. Energy balance in laser-based free form heading. Annals of the CIRP, Vol. 57, 2008, pp.291-294.

DOI: 10.1016/j.cirp.2008.03.028

Google Scholar

[11] A. Stephen, F. Vollertsen. Influence of the Rod Diameter on the Upset Ratio in Laser-based Free Form Heading. Steel Research International, Special Edition, 2011, pp.220-223.

Google Scholar

[12] H. Brüning, F. Vollertsen. Formability of micro material preforms generated by laser melting. Proc. 37th Int. Matador Conference, Manchester, Great Britain, 2012, pp.373-376.

Google Scholar

[13] H. Valberg, Applied Metal Forming, Cambridge University Press, (2010).

Google Scholar