Wear Prediction for Hot Forging Dies under Consideration of Structure Modification in the Surface Layer

Article Preview

Abstract:

Hot forging dies are exposed to a combination of high mechanical and thermal load in each forging cycle leading to abrasive wear that is one of the most frequent causes of die failure. Due to the high difference in temperature between the dies and the workpiece the surface layer material of forging dies undergoes very high thermal shock loads. High temperatures, which occur in each cycle lead to material annealing and to a softening of the material in the surface layer. However, there are die regions, like convex radiuses, where the surface temperatures exceed the austenitizing temperature. In combination with high cooling rates martensitic structures with a high hardness are generated in these regions. Both, softening as well as hardening of the tool material have a great influence on the wear resistance of dies. Nowadays a prediction of the wear amount is possible by using Finite Element Method (FEM) in combination with wear models. The approach for hot forging processes provides an input of die hardness curves under cyclic thermal load. Only by calculating die wear using this hardness curve a good accuracy of the FE result with experimental investigations is possible. Therefore relevant tests of hot forging material under typical forging load should be designed, conducted and afterwards used in the FE based wear prediction for hot forging dies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

341-348

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Saiki, Y. Marumo, A. Minami, T. Sonoi, Effect of the surface structure on the resistance to plastic deformation of hot forging tools, J. Mat. Proc. Tech. 113 (2001) 22–27.

DOI: 10.1016/s0924-0136(01)00632-x

Google Scholar

[2] D.J. Jeong, D.J. Kim, J.H. Kim, B.M. Kim, T.A. Dean, Effects of surface treatments and lubricants for warm forging die life, J. Mat. Proc. Tech. 113 (2001) 544–550.

DOI: 10.1016/s0924-0136(01)00693-8

Google Scholar

[3] M. Shirgoakar, Technology to improve competitiveness in warm and hot forging- increasing die life and material utilization, Dissertation, The Ohio State University, (2008).

Google Scholar

[4] S. Walter, Beitrag zu den Werkstoffversagensmechanismen beim Gesenkschmieden, Dissertation, Universität Hannover, VDI Verlag, (1999).

Google Scholar

[5] H. Luig, T. Bobke, P. Groche, Funktion gegen Verlust und Verschleiß, Technische Rundschau (1990) 42–50.

Google Scholar

[6] D. Caliskanoglu, I. Siller, R. Ebner, H. Leitner, F. Jeglitsch, W. Waldhauser, Thermal fatigue and softening behaviour of hot work tool steels, ICT Conference (2002) 1 591–601.

DOI: 10.1051/jp4:2004120074

Google Scholar

[7] T. Bobke, Randschichtphänomene bei Verschleißvorgängen an Gesenkschmiedewerkzeugen, Dissertation, Universität Hannover, Düsseldorf, VDI Verlag, (1991).

Google Scholar

[8] H. Haferkamp, F. -W. Bach, C. Baar, E. Doege, C. Romanowski, Reibung und Verschleiß beim Schmieden, in Fortschritte in der Werkzeugtechnik, Schmieden-Blechumformung-Organisation. E. Doege, D. Besdo, H. Haferkamp, H.K. Tönshoff, H. -P. Wiendahl, (Eds. ), Verlag Meisenbach , 1995, p.43.

Google Scholar

[9] F. -W. Bach, T. Bobke, E. Doege, D. Linse, Gefügereaktionen und Verschleiß der Randzone von Schmiedegesenken und ihre Beeinflussung durch Plasmaoberflächenbehandlungen, UKH, Hannover, 14. -15. 03. 1990, 13/1-13.

Google Scholar

[10] E. Doege, T. Bobke, K. Peters, Fortschritt der Randzonenschädigung in Schmiedegesenken, Stahl und Eisen, 111 (1991) 113–118.

Google Scholar

[11] A. Weroński, T. Hejwowski, Thermal fatigue of metals, 74, New York, M. Dekker, (1991).

Google Scholar

[12] C. Agelet de Sarcibar, M. Chiumenti, On the numerical modeling of frictional wear phenomena computer methods in applied mechanics and engineering, 177 (1999) 401–426.

DOI: 10.1016/s0045-7825(98)00390-9

Google Scholar

[13] R. Melching, Verschleiss, Reibung und Schmierung beim Gesenkschmieden, Dissertation, Universität Hannover, (1980).

Google Scholar

[14] J.F. Archard, Wear Theory and Mechanism, in Wear control hand-book, Peterson, M., Winer, W.O. (Eds. ), New York (1980) p.35–80.

Google Scholar

[15] T. Sobis, U. Engel, M. Geiger, A Theoretical Study on Wear Simulation in Metal Forming Processes, J. Mat. Proc. Tech. (1992) 233–240.

DOI: 10.1016/0924-0136(92)90112-6

Google Scholar

[16] S. Andersson, Wear Simulation, in Advanced Knowledge Application in Practice, Fuerstner, I. (Eds. ), 2010, p.15–36.

Google Scholar

[17] V. Hegadekatte, Kurzenhäuser, N. Huber, O. Kraft, A predictive modeling scheme for wear in tribometers, Trib. Int., 41 (2008) 1020–1031.

DOI: 10.1016/j.triboint.2008.02.020

Google Scholar

[18] E. Felder, J.L. Montagut, Friction and wear during the hot forging of steels, Trib. Int., 13 (1980) 61–68.

DOI: 10.1016/0301-679x(80)90011-0

Google Scholar

[19] J.H. Kang, I.W. Park, J. Jae, S. Kang, A study on die wear model of warm and hot forgings Metals and Materials 1 (1998) 477–483.

DOI: 10.1007/bf03187813

Google Scholar

[20] B. -A. Behrens, F. Schäfer, Prediction of wear in hot forging tools by means of finite-element-analysis, J. Mat. Proc. Tech. (2005) 309–315.

DOI: 10.1016/j.jmatprotec.2005.06.057

Google Scholar