Determination of the Technical Energy Flexibility of Production Systems

Article Preview

Abstract:

Besides the energy efficiency approach to reduce energy demands of production systems there are also other possibilities to decrease the energy related operating costs. Amongst others avoiding long-term peak loads represents a common measure. In possible future cases a flexible energy demand of factories can also be refunded by the energy provider within new tariff structures. This paper shows the potentials of production systems to alternate their energy demand within productive state, which is also referred to as technical energy flexibility. The focus is on machines of sensitive main processes, where an influence on the energy demand could induce distinct negative effects on the product quality. It is shown how and to which extent the energy demand of production systems can be controlled without negative effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

365-372

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Yusta, F. Torres, and H.M. Khodr, Optimal Methodology for a Machining Process Scheduling in Spot Electricity Markets, Energy Conversion and Management Vol. 51/12 (2010) 2647–2654.

DOI: 10.1016/j.enconman.2010.05.030

Google Scholar

[2] W. Eversheim, Produktionstechnik und -verfahren, in W. Kern et al. (Eds. ), Handwörterbuch der Produktionswirtschaft, Schaefer-Poeschel-Verlag, Stuttgart, 1996, p.1534–1544.

Google Scholar

[3] M. Grassl, E. Vikdahl, G. Reinhart, A Petri-Net based Approach for Evaluating Energy Flexibility of Production Machines, in M.F. Zaeh (Ed. ), Enabling Manufacturing Competitiveness and Economic Sustainability, Springer International Publishing, 2014, p.303.

DOI: 10.1007/978-3-319-02054-9_51

Google Scholar

[4] A. Pechmann, I. Schöler, Optimizing Energy Costs by intelligent Production Scheduling, in J. Hesselbach and C. Herrmann (Eds. ), Glocalized Solutions for Sustainability in Manufacturing, Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Springer, Berlin, 2011, p.293.

DOI: 10.1007/978-3-642-19692-8_51

Google Scholar

[5] R. Popp, M.F. Zaeh, Steuerung des Energiebedarfs von Werkzeugmaschinen, wt Werkstattstechnik online 104 H7/8 (2014), submitted.

DOI: 10.37544/1436-4980-2014-6-413

Google Scholar

[6] VDI4602 – Energy Management – Terms and Definitions (2007).

Google Scholar

[7] S. Hirzel, B. Sontag, C. Rohde, Betriebliches Energiemanagement in der industriellen Produktion, Fraunhofer ISI, Karlsruhe, (2011).

Google Scholar

[8] E. Müller, R. Hiersemann, PEACH – Projektierung und Steuerung energieeffizienter Anlagen, in E. Müller et B. Spanner-Ulmer (Eds. ), Wissenschaftliche Schriftenreihe des Institutes für Betriebswissenschaften und Fabriksysteme, Chemnitz, (2010).

Google Scholar

[9] N. Weinert, Vorgehensweise für Planung und Betrieb energieeffizienter Produktionssysteme, Dissertation Technische Universität Berlin, Fraunhofer Verlag, Stuttgart, (2010).

Google Scholar

[10] W. Schöfberger, Abschaltbare Fabrik – Zentrale Leittechnik und Gesamtkonzept zu Energieeinsparungen und zur Ressourcenoptimierung im Standby Betrieb von Industrieanlagen, Vienna, (2010).

Google Scholar

[11] A. Verl, E. Westkämper, E. Abele, A. Dietmair, J. Schlechtendahl, J. Friedrich, H. Haag, S. Schrems, Architecture for Multilevel Monitoring and Control of Energy Consumption, in J. Hesselbach and C. Herrmann (Eds. ), Glocalized Solutions for Sustainability in Manufacturing, Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Springer, Berlin, 2011, p.347.

DOI: 10.1007/978-3-642-19692-8_60

Google Scholar

[12] B. Denkena, T. Garber, NCplus Prozess- und wertschöpfungsorientiert gesteuerte Werkzeugmaschine, PZH-Verlag, Garbsen, (2013).

Google Scholar

[13] A. Dietmair, A. Verl, Energy Consumption Forecasting and Optimisation for Tool Machines, MM Science Journal 3 (2009) 62–67.

DOI: 10.17973/mmsj.2009_03_20090305

Google Scholar

[14] B. Kuhrke, Methode zur Energie- und Medienbedarfsbewertung spanender Werkzeugmaschinen, Dissertation Technische Universität Darmstadt, epubli, Berlin, (2011).

Google Scholar

[15] E. Abele, M. Dittrich, C. Eisele, O. Kessling, W. Klöben, M. Rudolph, W. Rummel, Energieeffiziente Produktionsmaschinen durch Simulation in der Produktentwicklung, Ergebnisbericht des BMBF Verbundprojektes eSimPro, Darmstadt, (2013).

DOI: 10.3139/104.110431

Google Scholar

[16] A. Zein, Transition Towards Energy Efficient Machine Tools, Springer, Berlin, (2012).

Google Scholar

[17] T. Gutowski, J. Dahmus, A. Thiriez, Electrical Energy Requirements for Manufacturing Processes, 13th CIRP International Conference on Life Cycle Engineering, Lueven, (2006).

Google Scholar