Methodology for the Efficient Analysis of Thermal and Thermo-Elastic Behaviour of Machine Tools

Article Preview

Abstract:

Thermally induced deviations become the limiting factor for the precision of machine tools. Structure-based finite-element models of high resolution can estimate these deviations with high accuracy but have also a high computational effort. With model order reduction (MOR) these models can be converted into structure-preserving reduced-order finite-element models (FEM-MOR-models) which can be solved very efficiently in MATLAB/Simulink®. To improve model matching selective thermography is used. Selective thermography is a measurement method providing high structural resolution and minimal instrumentation expense due to the use of thermography and photogrammetric methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

395-402

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Mayr et al, Thermal issues in machine tools, CIRP Annals – Manufacturing Technology 61 (2012) 771-791.

Google Scholar

[2] M. Weck, C. Brecher, Werkzeugmaschinen - Messtechnische Untersuchung und Beurteilung, dynamische Stabilität, Springer, Berlin, (2006).

DOI: 10.1007/978-3-540-32951-0_4

Google Scholar

[3] K. Großmann, C. Städel, A. Galant, A. Mühl, Berechnung von Temperaturfeldern an Werkzeugmaschinen - Vergleichende Untersuchung alternativer Methoden zur Erzeugung kompakter Modelle, ZWF 107 (2012) 452-456.

DOI: 10.3139/104.110781

Google Scholar

[4] T. Luhmann, Close range photogrammetry: principles, techniques and applications, Whittles, (2006).

Google Scholar

[5] T. Luhmann, Close range photogrammetry for industrial applications, ISPRS Journal of Photogrammetry and Remote Sensing 65 (2010) 558-569.

DOI: 10.1016/j.isprsjprs.2010.06.003

Google Scholar

[6] K. Großmann, J. Müller, M. Merx, M. Riedel, Untersuchung des thermo-elastischen Verhaltens von Werkzeugmaschinen - Grundlagen der experimentellen Analyse mit Hilfe der selektiven Thermografie, ZWF 108 (2013) 492-497.

DOI: 10.3139/104.110981

Google Scholar

[7] M. Vollmer, K. -P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications, Wiley-VCH, Weinheim, (2010).

Google Scholar

[8] W. Minkina, S. Dudzik, Infrared Thermography: Errors and Uncertainties, Wiley-VCH, Weinheim, (2009).

Google Scholar

[9] U. Heisel, G. Koscák, T. Stehle, Thermography-Based Investigation into Thermally Induced Positioning Errors of Feed Drives By Example of a Ball Screw, CIRP Annals – Manufacturing Technology 55(1) (2006) 423-426.

DOI: 10.1016/s0007-8506(07)60450-8

Google Scholar

[10] S. T. Smith, Modelling Hot Bodies: Combined real-time 3D Thermal Imaging for Medical Applications, MSc IT project report, Glasgow University (2002).

Google Scholar

[11] K. Großmann, A. Galant, M. Merx, M. Riedel, Verfahren zur effizienten Analyse des thermo-elastischen Verhaltens von Werkzeugmaschinen, in: R. Neugebauer, W. -G. Drossel (Eds. ), Innovations of Sustainable Production for Green Mobility – Energy-Efficient Technologies in Production, Reports from the IWU volume 80 (2014).

Google Scholar

[12] K. Großmann, A. Galant, A. Mühl, Effiziente Simulation durch Modellordnungsreduktion - Thermo-elastische Berechnung von Werkzeugmaschinen-Baugruppen, ZWF 107 (2012) 457-461.

DOI: 10.3139/104.110784

Google Scholar