Parameter Identification of NC-Axes during Regular Operation of a Machine Tool

Article Preview

Abstract:

Monitoring functions of machine tools are of increasing importance to enhance their productivity. They can also be complemented by several system identification approaches which provide additional information. To utilize these approaches, special requirements, e. g. adequate reactions to variant process excitations during the regular process have to be fulfilled. The paper deals with the identification of velocity loop parameters of numerical controlled (NC) axes on a state of the art machine tool and gives an insight on how to correspond to the given requirements. Mainly, this is done by implementing extending modules, of which the model error estimation is pointed out in particular. Experiments with data for a turning operation show the practicability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

419-426

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] eniPROD®, Ergebnisbroschüre des Spitzentechnologieclusters, Technische Universität Chemnitz, Chemnitz, (2014).

Google Scholar

[2] S. Beineke, H. Wertz, Design of extended Kalman filters for high performance position control of electrical drives, in: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, 1999, pp.209-214.

DOI: 10.1109/aim.1999.803168

Google Scholar

[3] R. Isermann, M. Münchhof, Identification of Dynamic Systems, Springer Verlag, Berlin-Heidelberg, (2011).

Google Scholar

[4] D.J. Ewins, Modal Testing: Theory, Practice and Application, Research Studies Press, Baldock - Hertfortshire, (2000).

Google Scholar

[5] R. Schönherr, Regelkreisüberwachung mechatronischer Antriebssysteme, Verlag Wissenschaftliche Scripten, Auerbach, (2012).

Google Scholar

[6] Siemens AG, SIMOTION Motion Control TO Achse elektrisch/hydraulisch, Externer Geber: Funktionshandbuch, (2011).

Google Scholar

[7] M. Kleinert, A. Huf, A. Verl, Kontinuierliche Kennwertberechnung als steuerungsinterne Task, in: K. Bender, W. Schumacher, A. Verl (Eds. ), Tagungsband SPS/IPC/Drives 2010, VDE Verlag Berlin, 2010, pp.361-369.

Google Scholar

[8] P. Dresselhaus, J. Nix, Integration von Condition Monitoring in eine PC-basierte Steuerung, in: K. Bender, W. Schumacher, A. Verl (Eds. ), Tagungsband SPS/IPC/Drives 2010, VDE Verlag Berlin, 2010, pp.35-360.

Google Scholar

[9] G. Byrne et al., Tool Condition Monitoring (TCM) – The Status of Research and Industrial Application, CIRP Annals – Manufacturing Technology, 44 (1995) 2, 541-567.

DOI: 10.1016/s0007-8506(07)60503-4

Google Scholar

[10] R. Teti, A review of tool condition monitoring literature data base, CIRP Annals – Manufacturing Technology, 44 (1995) 2, 659-666.

Google Scholar

[11] S. Beineke, Online-Schätzung von mechanischen Parametern, Kennlinien und Zustandsgrößen geregelter elektrischer Antriebe, VDI Verlag, Düsseldorf, (2000).

Google Scholar

[12] F. Schütte, Automatisierte Reglerinbetriebnahme in elektrischen Antrieben mit schwingungsfähiger Mechanik, Dissertation, Shaker Verlag, Aachen, (2003).

Google Scholar

[13] R. Neugebauer, A. Hellmich, S. Hofmann, H. Schlegel, Non-invasive Identification of Servo Drive Parameters, JAMRIS, Journal of Automation, Mobile Robotics & Intelligent Systems, 6 (2012) 13-16.

DOI: 10.1007/978-3-642-23244-2_10

Google Scholar

[14] A. Hellmich, K. Hipp, S. Hofmann, H. Schlegel, W. G. Drossel: Combining a Non-Invasive Identification Approach with Simulation Based Optimization for Accuracy Improvement, submitted to the 14th Mechatronics Forum International Conference Karlstad, Sweden (2014).

Google Scholar

[15] A. Hellmich: Nichtinvasive Identifikation von Regelstreckenparametern für elektromechanische Achsen, submitted to Techische Universitaet Chemnitz (2014).

Google Scholar

[16] A. Hellmich, S. Hofmann, K. Hipp, H. Schlegel, W. G. Drossel, Assessing the Accuracy of a Non-Invasive Identification Method, in: International Symposium on Electrodynamic and Mechatronic Systems SELM, 2013, pp.11-12.

DOI: 10.1109/selm.2013.6562955

Google Scholar

[17] A. Hellmich, S. Hofmann, K. Hipp, H. Schlegel, W. G. Drossel, Similarity Estimation for Assessing the Accuracy of a Non-Invasive Identification Method, Solid State Phenomena 214 (2014) 20-31.

DOI: 10.4028/www.scientific.net/ssp.214.20

Google Scholar

[18] J. -W. Choi, S. -C. Lee, H. -G. Kim, Inertia identification algorithm for high-performance speed control of electric motors, IEEE Proceedings Electric Power Applications, 3 (2006) 379-386.

DOI: 10.1049/ip-epa:20050360

Google Scholar