3D Printing of Inorganic Sand Moulds for Casting Applications

Article Preview

Abstract:

The paper at hand introduces a 3D printing (3DP) process for additive manufacturing of inorganically bound sand moulds. The fundamental differences to 3DP with organic binders (which is state of the art) are explained and the quality relevant process parameters of the inorganic process are introduced. Since the inorganic binder system is thermally activated during the printing process the main focus lies on the heating procedure. The properties of printed specimens are measured by the quality features fluid migration and strength for which novel methods of moulding sand testing are used. Results show that the identified process parameters have a significant influence on specimen properties. The interaction of the attributes fluid migration and strength are also shown. By understanding the relationship between process parameters and quality features the properties of printed inorganic sand moulds can be tailored to fit casting specific requirements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

441-449

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Tilch; H. Polzin, GIFA 2003: Formstoffe, Formverfahren und Maschinen zur Form- und Kernherstellung, Formstoffaufbereitung und Regenerierung. Giesserei-Praxis (2003) 407-429.

Google Scholar

[2] H. Polzin, Übersicht chemisch härtende Formstoffe, Giesserei-Praxis (2007) 334-357.

Google Scholar

[3] P. Groening, Formverfahren mit nicht tongebundenen Formstoffen, Giesserei 99 (2012) 34-43.

Google Scholar

[4] T. Pabel, Anorganisches Bindersystem: Einsatz von INOTEC-Kernen für deutlich verbesserte mechanische Eigenschaften von Al-Gussteilen, Giesserei-Praxis (2009) 359-366.

Google Scholar

[5] H. Polzin, Anorganische Binder zur Form- und Kernherstellung in der Gießerei. first ed., Schiele & Schön, Berlin, (2012).

Google Scholar

[6] I. Ederer, Werkzeuglose Formherstellung mittels 3D-Drucktechnologie, Giesserei-Praxis (2004) 407-410.

Google Scholar

[7] A. Psimenos, The new EU-Regulation on Classification, Labelling and Packaging of Substances and Mixtures on the Foundry Industry, Giesserei-Rundschau 58 (2011) 10-13.

Google Scholar

[8] E. Weissenbek, J. Willimayer, J. Wolf, BMW-Leichtmetallgießerei setzt auf anorganische gebundene Kerne, Giesserei 95 (2008) 32-35.

Google Scholar

[9] VDI-Richtlinie 3404, Generative Fertigungsverfahren Rapid-Technologien (Rapid Prototyping) Grundlagen, Begriffe, Qualitätskenngrößen, Liefervereinbarungen, Beuth, Berlin, (2009).

Google Scholar

[10] R. Höchsmann, Wie das 3-D-Druckverfahren Gießereiprozesse revolutioniert. Giesserei 100 (2013) 66-68.

Google Scholar

[11] J.M. Ségaud, Vision 2025 - 3D - Drucken von Kernen, Giesserei 101 (2014) 24-25.

Google Scholar

[12] U. Berger, A. Hartmann, D. Schmid, Additive Fertigungsverfahren: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing, first ed., Europa Lehrmittel, Haan-Gruiten, (2013).

DOI: 10.3139/9783446436527.005

Google Scholar

[13] C. Wallenhorst, Grundlagen zum Verständnis der anorganischen Kernfertigung, Giesserei-Praxis (2010) 181-184.

Google Scholar

[14] B. Utela, D. Storti, R. Anderson, M. Ganter, A review of process development steps for new material systems in three dimensional printing (3DP), Journal of Manufacturing Processes 10 (2008) 96-104.

DOI: 10.1016/j.jmapro.2009.03.002

Google Scholar

[15] VDG-Merkblatt: Prüfung von tongebundenen Formstoffen P38: Bestimmung der Festigkeit, VDG Akademie, Düsseldorf, (1997).

Google Scholar

[16] VDG-Merkblatt: Bindemittelprüfung P72: Prüfung von kalthärtenden, kunstharzgebundenen feuchten Formstoffen mit Härterzusatz, VDG Akademie, Düsseldorf (1999).

Google Scholar

[17] R. Danzer, T. Lube, P. Supancic; M. Damani, A. Boerger; R. Binder, Verfahren und Einrichtung zur Bestimmung der Bruchfestigkeit von spröden Werkstoffen, Patent No. AT 411 714 B, (2002).

Google Scholar

[18] R. Danzer, P. Supancic; W. Harrer, Der 4-Kugelversuch zur Ermittlung der biaxialen Biegefestigkeit spröder Werkstoffe, in: Kriegesmann, Technische Keramische Werkstoffe, HvB Verlag, Ellerau, 2009, pp.1-48.

Google Scholar

[19] H. Gercek, Poisson's ratio values for rocks, International Journal of Rock Mechanics & Mining Sciences 44 (2007) 1-13.

DOI: 10.1016/j.ijrmms.2006.04.011

Google Scholar