An Approach towards Improving the Robustness of Production Systems

Article Preview

Abstract:

Robustness becomes a crucial feature of production systems. On the one hand, the systems are subject to many disturbances and on the other hand, a reliable production is demanded. A robust system shall be able to keep the working process on a good performance level despite occurring disturbances. To enable such a system’s behaviour, different actions have to be taken. The paper presents an approach to identify the best action to improve a system’s robustness on an operational and tactical level by investigating its disturbances and performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

461-468

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Padhi, S. Wagner, T. Niranjan, V. Aggarwal, A simulation-based methodology to analyse production line disruptions, in: International Journal of Production Research (2013).

DOI: 10.1080/00207543.2012.720389

Google Scholar

[2] H. Carvalho, V. Machado, Fuzzy set theory to establish resilient production systems, in: IIE Annual Conference and Exhibition (2006).

Google Scholar

[3] M. Meyer, M. Apostu, K. Windt, Analyzing the Influence of Capacity Adjustments on Performance Robustness in Dynamic Job-shop Environments, in: K. Windt (Ed. ), Lecture Notes in Production Engineering: Robust Manufacturing Control, Springer, (2013).

DOI: 10.1016/j.procir.2013.06.014

Google Scholar

[4] M. Monauni, M. Meyer, K. Windt, Evaluation Model for Robustness and Efficiency Trade-Offs in Production Capacity Decisions in Turbulent Markets, in: K. Windt (Ed. ), Lecture Notes in Production Engineering: Robust Manufacturing Control, Springer, (2013).

DOI: 10.1007/978-3-642-30749-2_39

Google Scholar

[5] M. Meyer, K. Windt, Lean um jeden Preis? – Interdisziplinäre Methoden als Lösungsansätze für den Positionierungskonflikt zwischen Effizienz und Robustheit, in: Kongressband 2011 zum 28. Deutscher Logistik-Kongress, (2011).

Google Scholar

[6] S. Saad, N. Gindy, Handling internal and external disturbances in responsive manufacturing environments, in: Production Planning & Control (1998).

DOI: 10.1080/095372898233533

Google Scholar

[7] H. Beyer, B. Sendhoff, Robust optimization - a comprehensive survey, in: Computer methods in applied mechanics and engineering, 196, 3190-3218. (2007).

DOI: 10.1016/j.cma.2007.03.003

Google Scholar

[8] Verein Deuscher Ingenieuere (VDI), Sicherheitstechnische Begriffe für Automatisierungssysteme Zuverlässigkeit und Sicherheit komplexer Systeme (Begriffe), in: VDI Richtlinie 3542, S. 1–17. (2000).

Google Scholar

[9] G. Dellino, J. Kleijnen, C. Meloni, Robust optimization in simulation: Taguchi and Krige combined, in: INFORMS Journal on Computing 24, Nr. 3, 471–484. (2012).

DOI: 10.1287/ijoc.1110.0465

Google Scholar

[10] A. Scholl, Robuste Planung und Optimierung, Springer (2001).

Google Scholar

[11] V. Guigues, Robust production management, in: Optimization and Engineering, 10(4), 505–532, (2009).

Google Scholar

[12] T. Bauernhansl, J. Mandel, S. Diermann, Evaluating Changeability Corridors for Sustainable Business Resilience, in: Procedia CIRP, 3, 364–369, (2012).

DOI: 10.1016/j.procir.2012.07.063

Google Scholar

[13] J. Kleijnen, E. Gaury, Short-term robustness of production management systems: A case study, in: European journal of operational research, 148(2), 452–465, (2003).

DOI: 10.1016/s0377-2217(02)00437-x

Google Scholar

[14] S. Fischer, D. Popitz, Effizientes Störungsmanagement für komplexe Produktionssysteme, in: Productivity Management 15, Heft 3, S. 16–19. (2010).

Google Scholar

[15] T. Kohstall, Instrumente zum Bewerten betrieblicher Störungen - mit Ausfallkostenkalkulator und Checklisten zur Störungsbewertung, in: iga-Report 6. Vollständig überarbeitete Ausgabe (2011).

Google Scholar

[16] E. Gutenberg, Grundlagen der Betriebswirtschaftslehre – Erster Band; Die Produktion. 18., neu bearbeitete Auflage, Springer (1971).

Google Scholar

[17] H. Fischäder, H. Schneider, Störparameter im Materialfluss und in Produktionssystemen, in: Dickmann, Philipp (Hrsg. ): Schlanker Materialfluss - mit Lean Production, Kanban und Innovationen. 2. aktualisierte und erweiterte Auflage, Springer, S. 294–297. (2009).

DOI: 10.1007/978-3-540-79515-5_1

Google Scholar

[18] VDMA 66412-1: 2009-10 Manufacturing Execution Systems (MES) Kennzahlen, Beuth Verlag, (2009).

Google Scholar