[1]
R.E. Brown, Silico-thermic magnesium in Alabama, in: Bickert C M and Guthrie R L (Eds. ), Light Metals 1997 Metaux Legers, Montreal, The Metallurgical Society of C.I. M, 603-613.
Google Scholar
[2]
C. Zang, W. Ding, The Pidgeon Process In China And Its Future, in: The Magnesium Technology 2001, J. Hryn (Ed. ), TMS (The Minerals, Metals &Materials Society) 2001, 7-10.
DOI: 10.1002/9781118805497.ch2
Google Scholar
[3]
B. Mehrabi, M. Abdellatif, F. Masoudi, Evaluation Of Zefreh Dolomite For Production Of Magnesium Via The PidgeonProcess, Mineral Processing & Extractive Metall. Rev., 33: 316–326, (2012).
DOI: 10.1080/08827508.2011.601478
Google Scholar
[4]
X Jinxiang, China Magnesium Development Report in 2012, in: 70th Annual World Magnesium Conference Proceedings, Xi'an, China (2013) pp.1-6.
Google Scholar
[5]
X. Delong, Y. Kang, X. Qunhu, X. Biao, Boosting Shaanxi Magnesium Industry with Science and Technology, 70th Annual World Magnesium Conference Proceedings, May 19-21, 2013 Xi'an, 7-15.
Google Scholar
[6]
Information on http: /gossan. ca/projects/pdf/MgGHGReport. pdf.
Google Scholar
[7]
M. Abdellatif, M. Freeman, Mintek Thermal Magnesium Process: Status and Prospective, Advanced Metals Initiative, Department of Science and Technology, South Africa 18-19 October (2008).
Google Scholar
[8]
K. M Willett, P.D. Jones, P.W. Thorne, N.P. Gillett, A comparison of large scale changes in surface humidity over land in observations and CMIP3 general circulation models, Environ. Res. Lett. Volume 5, Number 2 (2010).
DOI: 10.1088/1748-9326/5/2/025210
Google Scholar
[9]
T. Tripp, Production of magnesium from Great Salt Lake, Utah, USA , in: Saline lakes around the world, A. Oren, D.L. Naftz, W.A. Wurtsbaugh (Eds. ), S.J. and Jessie E. Quinney Natural Resources Research Library, Utah State University. 2009, pp.55-62.
Google Scholar
[10]
Kh.L. Strelets, Electrolytic Production of Magnesium, Israel Program for Scientific Translations, Jerusalem, 1977, 66-76.
Google Scholar
[11]
K.K. Kelly, Energy Requirements and Equilibria in the Dehydration, Hydrolysis and Decomposition of Magnesium Chloride, U.S., Bureau of Mines, Tech. Paper 676, Washington, (1945).
Google Scholar
[12]
Information on http: /www. nrel. gov/docs/fy02osti/30372. pdf.
Google Scholar
[13]
R Thayer, R. Neelameggham, Improving the Electrolytic Process for Magnesium Production, J. of Metals, August 2001, 15-17.
Google Scholar
[14]
Information on http: / www. floridaenergy. ufl. edu/.. /uploads/METALS_FOA_-_03_20_131. pdf.
Google Scholar
[15]
E. C. Houston, Magnesium from Olivine , Metals Technology 1945 – Volume XII , AIME, Technical Publication No. 1828.
Google Scholar
[16]
M. Avedesian, Magnesium & Magnesium Alloys, in Avedesian M and Baker H, ASM Specialty Handbook, ASM International, (1999) pp.1-4.
Google Scholar
[17]
K. Watson, P. Ficara, M. Charron, J. Peacey, E.W. Chin , G. Bishop, The Magnola Demonstration Plant, in: Kaplan H I, Hryn J, Clow B(Eds. ), Magnesium Technology 2000, Nashville, TN, TMS Annual Meeting, p.27 – 30.
DOI: 10.1002/9781118808962.ch5
Google Scholar
[18]
F. Picard and J. Fournier, Patent Application, WO2014-029031 (2014).
Google Scholar
[19]
Aghion, E. S. C. Bartos, Comparative Review of Primary Magnesium Production Technologies as Related to Global Climate Change. in 65th Annual World Magnesium Conference, Warsaw, (2008).
Google Scholar
[20]
Information on http: /www. intlmag. org/newsroom/2013IMA_LCA_Report_Public. pdf.
Google Scholar
[21]
S.K. Das, information on http: /www. floridaenergy. ufl. edu/.. /uploads/METALS_FOA_-_03_20_131. pdf.
Google Scholar
[22]
D. A. Elkins, P. 1. Placek, K. C. Dean, An Economic and Technical Evaluation of Magnesium Production Methods -Part 2. Carbothermic, Report of Investigations 6946 Bureau of Mines (1967).
Google Scholar
[23]
R. Neelameggham, R.E. Brown and B.R. Davis, Energy Efficient and Low GHG emission Thiometallurgical Process: submitted to JOM, September (2014).
Google Scholar
[24]
W. H. Maclntire, US Patent, 2, 298, 493, (1942).
Google Scholar
[25]
B. Wojak, Patent WO2008034229 A1 (2008), US Patent 7543438 (2009).
Google Scholar
[26]
C. V.F. Fernando, P.B. Roberval, Rima's Process: Green Magnesium From a Fully Integrated Plant, 68th Annual World Magnesium Conference, Prague 2011, pp.43-50.
Google Scholar
[27]
R. Neelameggham, Soda Fuel Cycle Metallurgy –Choices For CO2 Reduction, in CO2 Reduction Metallurgy, N. R Neelameggham, R.G. Reddy, (Eds. ), TMS Annual Meeting, New Orleans, (2008), pp.135-146.
DOI: 10.1007/s11837-009-0047-1
Google Scholar
[28]
R. Neelameggham, Conceptual Process Plant Utility Schemes with Hybrid Energy System, in Energy Technology-2010 R. Neelameggham, R. Reddy, C.K. Belt, A.M. Hagni and S.K. Das (Eds. ), TMS Annual Meeting, (2010), pp.121-126.
Google Scholar
[29]
N. Neelameggham and B.R. Davis, Heat transfer modeling of Global Anthropogenic Warming: submitted to Journal of Nanomaterial and Energy, (2014).
Google Scholar