[1]
E. Blanco, C.W. Kessinger, B.D. Sumer, J. Gao, Multifunctional micellar nanomedicine for cancer therapy, Exp Biol Med (Maywood), 234 (2009) 123-131.
DOI: 10.3181/0808-mr-250
Google Scholar
[2]
D.W. Urry, Free energy transduction in polypeptides and proteins based on inverse temperature transitions, Prog Biophys Mol Biol, 57 (1992) 23-57.
DOI: 10.1016/0079-6107(92)90003-o
Google Scholar
[3]
D.W. Urry, Physical Chemistry of Biological Free Energy Transduction As Demonstrated by Elastic Protein-Based Polymers†, The Journal of Physical Chemistry B, 101 (1997) 11007-11028.
DOI: 10.1021/jp972167t
Google Scholar
[4]
J.A. Mackay, A. Chilkoti, Temperature sensitive peptides: engineering hyperthermia-directed therapeutics, Int J Hyperthermia, 24 (2008) 483-495.
DOI: 10.1080/02656730802149570
Google Scholar
[5]
A. Chilkoti, T. Christensen, J.A. MacKay, Stimulus responsive elastin biopolymers: Applications in medicine and biotechnology, Curr Opin Chem Biol, 10 (2006) 652-657.
DOI: 10.1016/j.cbpa.2006.10.010
Google Scholar
[6]
E. Golemis, P.D. Adams, Protein-protein interactions : a molecular cloning manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (2005).
DOI: 10.1134/s0006297906060162
Google Scholar
[7]
S.M. Janib, M.F. Pastuszka, S. Aluri, Z. Folchman-Wagner, P.Y. Hsueh, P. Shi, Y.A. Lin, H. Cui, J.A. MacKay, A quantitative recipe for engineering protein polymer nanoparticles, Polymer Chemistry, (2014).
DOI: 10.1039/c3py00537b
Google Scholar
[8]
S.M. Janib, S. Liu, R. Park, M.K. Pastuszka, P. Shi, A.S. Moses, M.M. Orosco, Y.A. Lin, H. Cui, P.S. Conti, Z. Li, J.A. MacKay, Kinetic quantification of protein polymer nanoparticles using non-invasive imaging, Integrative biology : quantitative biosciences from nano to macro, 5 (2013).
DOI: 10.1039/c2ib20169k
Google Scholar
[9]
D. Chow, M.L. Nunalee, D.W. Lim, A.J. Simnick, A. Chilkoti, Peptide-based biopolymers in biomedicine and biotechnology, Materials Science and Engineering: R: Reports, 62 (2008) 125-155.
DOI: 10.1016/j.mser.2008.04.004
Google Scholar
[10]
M. Haider, Z. Megeed, H. Ghandehari, Genetically engineered polymers: status and prospects for controlled release, J Control Release, 95 (2004) 1-26.
DOI: 10.1016/j.jconrel.2003.11.011
Google Scholar
[11]
S.M. Janib, A.S. Moses, J.A. MacKay, Imaging and drug delivery using theranostic nanoparticles, Advanced Drug Delivery Reviews, 62 (2010) 1052-1063.
DOI: 10.1016/j.addr.2010.08.004
Google Scholar
[12]
V.P. Torchilin, PEG-based micelles as carriers of contrast agents for different imaging modalities, Advanced Drug Delivery Reviews, 54 (2002) 235-252.
DOI: 10.1016/s0169-409x(02)00019-4
Google Scholar
[13]
D.E. Meyer, G.A. Kong, M.W. Dewhirst, M.R. Zalutsky, A. Chilkoti, Targeting a Genetically Engineered Elastin-like Polypeptide to Solid Tumors by Local Hyperthermia, Cancer Research, 61 (2001) 1548-1554.
Google Scholar
[14]
J. Andrew MacKay, M. Chen, J.R. McDaniel, W. Liu, A.J. Simnick, A. Chilkoti, Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection, Nat Mater, 8 (2009) 993-999.
DOI: 10.1038/nmat2569
Google Scholar
[15]
W. Liu, M.R. Dreher, D.Y. Furgeson, K.V. Peixoto, H. Yuan, M.R. Zalutsky, A. Chilkoti, Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice, J Control Release, 116 (2006) 170-178.
DOI: 10.1016/j.jconrel.2006.06.026
Google Scholar