Electrochemical Stability of High Conducting PAN-Based Electrolytes for Lithium Ion Polymer Cells

Article Preview

Abstract:

Polyacrylonitrile (PAN) based polymer electrolytes composed of PAN, lithium tetrafluoroborate (LiBF4), ethylene carbonate (EC) and dimethyl phthalate (DMP) were prepared by solution casting technique. The variation of conductivity with LiBF4 concentrations of the prepared films has been studied using AC impedance spectroscopy. The conductivity of the films is charge concentration dependent and the highest room temperature conductivity of 1.08 ×10-2 S cm-1 is achieved for the film with optimum composition. The thermal activated conductivity of the films obeys Arrhenius rule in the temperature range from 303 K to 353 K. The electrochemical stability of the PAN-based films has been investigated using linear sweep voltammetry (LSV) with three electrodes system. The films were found to be electrochemically stable up to 4.4 V. The reversibility of the lithium ions conduction in the polymer electrolyte films have been studied using cyclic voltammetry (CV).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

335-338

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. MacCallum, C.A. Vincent, Polymer Electrolyte Reviews, Springer, (1987).

Google Scholar

[2] J.R. MacCallum, C.A. Vincent, Polymer Electrolyte Reviews, Springer, (1989).

Google Scholar

[3] B. Scrosati, Applications of Electroactive Polymers, Chapman & Hall, (1993).

Google Scholar

[4] M. Wakihara, O. Yamamoto, Lithium ion batteries: fundamentals and performance, Kodansha, (1998).

Google Scholar

[5] Y. Matsuda, M. Morita, H. Tsutsumi, J. Power Sources 44 (1993) 439-443.

Google Scholar

[6] G. Feuillade, P. Perche, J Appl Electrochem 5 (1975) 63-69.

Google Scholar

[7] F.A. Amaral, C. Dalmolin, S.C. Canobre, N. Bocchi, R.C. Rocha-Filho, S.R. Biaggio, J. Power Sources 164 (2007) 379-385.

DOI: 10.1016/j.jpowsour.2006.10.049

Google Scholar

[8] H. Tsutsumi, T. Kitagawa, Solid State Ionics 177 (2006) 2683-2686.

Google Scholar

[9] A. Abouimrane, I. Belharouak, K. Amine, Electrochem. Commun. 11 (2009) 1073-1076.

Google Scholar

[10] S. Rajendran, O. Mahendran, R. Kannan, J Solid State Electrochem 6 (2002) 560-564.

Google Scholar

[11] H.S. Kim, C.H. Paik, B.W. Cho, J.T. Kim, K.S. Yun, H.S. Chun, J. Power Sources 68 (1997) 361-363.

Google Scholar

[12] C.S. Ramya, S. Selvasekarapandian, T. Savitha, G. Hirankumar, P.C. Angelo, Physica B: Condensed Matter 393 (2007) 11-17.

DOI: 10.1016/j.physb.2006.11.021

Google Scholar

[13] M. Ue, J. Electrochem. Soc. 141 (1994) 3336-3342.

Google Scholar

[14] M. Ue, S. Mori, J. Electrochem. Soc. 142 (1995) 2577-2581.

Google Scholar

[15] H. -J. Rhoo, H. -T. Kim, J. -K. Park, T. -S. Hwang, Electrochim. Acta 42 (1997) 1571-1579.

Google Scholar

[16] S. Ramesh, A.K. Arof, Mat Sci. and Eng B 85 (2001) 11-15.

Google Scholar

[17] Y.T. Chen, Y.C. Chuang, J.H. Su, H.C. Yu, Y.W. Chen-Yang, J. Power Sources 196 (2011) 2802-2809.

Google Scholar

[18] H. -H. Kuo, W. -C. Chen, T. -C. Wen, A. Gopalan, J. Power Sources 110 (2002) 27-33.

Google Scholar