[1]
J. Robertson, High dielectric constant oxides, Eur. Phys. J. Appl. Phys. 28 (2004) 265-291.
DOI: 10.1051/epjap:2004206
Google Scholar
[2]
J. H. Kim, V. A. Ignatova, M. Weisheit, Annealing effect on physical and electrical characteristics of thin HfO2, HfSixOy and HfOyNz films on Si, Microelectron. Eng. 86 (2009) 357-360.
DOI: 10.1016/j.mee.2008.11.012
Google Scholar
[3]
J. Kolodzey, E. A. Chowdhury, T. N. Adam, G. Qui, I. Rau, J. O. Olowolafe, J. S. Suehle, Y. Chen, Electrical conduction and dielectric breakdown in aluminum oxide insulator on silicon, IEEE Trans. Electron Dev. 47 (2000) 121-128.
DOI: 10.1109/16.817577
Google Scholar
[4]
H. J. Quah, K. Y. Cheong, Z. Hassan, Z. Lockman, F. A. Jasni, W. F. Lim, Effects of postdeposition annealing in argon ambient on metallorganic decomposed CeO2 gate spin coated on silicon, J. Electrochem. Soc. 157 (2010) H6-H12.
DOI: 10.1149/1.3244214
Google Scholar
[5]
H. J. Quah, K. Y. Cheong, Effects of post-deposition annealing ambient on Y2O3 gate deposited on silicon by RF magnetron sputtering, J. Alloys Compd. 529 (2012) 73-83.
DOI: 10.1016/j.jallcom.2012.02.122
Google Scholar
[6]
V. H. Mudavakkat, V. V. Atuchin, V. N. Kruchinin, A. Kayani, C. V. Ramana, Structure, morphology and optical properties of nanoscrystalline yttrium oxide (Y2O3) thin films, Opt. Mat. 34 (2012) 893-900.
DOI: 10.1016/j.optmat.2011.11.027
Google Scholar
[7]
C. V. Ramana, V. H. Mudavakkat, K. K. Bharathi, V. V. Atuchin, L. D. Pokrovsky, V. N. Kruchinin, Enhanced optical constants of nanocrystalline yttrium oxide thin films, Appl. Phys. Lett. 98 (2011) 031905-1-031905-3.
DOI: 10.1063/1.3524202
Google Scholar
[8]
L. Pei, Z. Jiaqi, Z. Yuankun, J. Chunzhu, Y. Xunbo, Evolution of composition, microstructure and optical properties of yttrium oxide thin films with substrate temperature, Surf. Coat. Technol. 229 (2013) 226-230.
DOI: 10.1016/j.surfcoat.2012.03.074
Google Scholar
[9]
P. Lei, J. Zhu, Y. Zhu, C. Jiang, X. Yin, Yttrium oxide: thin films prepared under different oxygen-content atmospheres: microstructure and optical properties, Appl. Phys. A 108 (2012) 621-628.
DOI: 10.1007/s00339-012-6940-4
Google Scholar
[10]
H. J. Quah, K. Y. Cheong, Deposition and post-deposition annealing of thin Y2O3 film on n-type Si in argon ambient, Mater. Chem. Phys. 130 (2011) 1007-1015.
DOI: 10.1016/j.matchemphys.2011.08.024
Google Scholar
[11]
E. P. Gusev, H. C. Lu, T. Gustafsson, E. Garfunkel, M. L. Green, D. Brasen, The composition of ultrathin silicon oxynitrides thermally grown in nitric oxide, J. Appl. Phys. 82 (1997) 896-898.
DOI: 10.1063/1.365858
Google Scholar
[12]
W. Kern, The evolution of silicon wafer cleaning technology, J. Electrochem. Soc. 137 (1990) 1887-1892.
DOI: 10.1149/1.2086825
Google Scholar
[13]
H. J. Quah, K. Y. Cheong, Study on gallium nitride-based metal-oxide-semiconductor capacitors with RF magnetron sputtered Y2O3 gate, IEEE Trans. Electron Dev 59 (2012) 3009-3016.
DOI: 10.1109/ted.2012.2212903
Google Scholar
[14]
H. J. Quah, K. Y. Cheong, Surface passivation of gallium nitride by ultrathin RF-magnetron sputtered Al2O3 gate, ACS Appl. Mater. Interfaces 5 (2013) 6860-6863.
DOI: 10.1021/am402333t
Google Scholar
[15]
H. J. Quah, K. Y. Cheong, Effects of post-deposition annealing ambient on chemical, structural, and electrical properties of RF magnetron sputtered Y2O3 gate on gallium nitride, J. Alloy Compd. 575 (2013) 382-392.
DOI: 10.1016/j.jallcom.2013.05.202
Google Scholar
[16]
H. J. Quah, K. Y. Cheong, Z. Hassan, Z. Lockman, Effects of N2O postdeposition annealing on metal-organic decomposed CeO2 gate spin-coated on GaN substrate, J. Electrochem. Soc. 158 (2011) H423-H432.
DOI: 10.1149/1.3548542
Google Scholar