[1]
N.V. Skorodumova, S.I. Simak, B.I. Lundqvost, I.A. Abrikosov, B. Johansson, Quantum origin of the oxygen exchange capability of ceria, Phys. Rev. Lett. 89 (2002) 166601-1-4.
DOI: 10.1103/physrevlett.89.166601
Google Scholar
[2]
R.K. Hailstone, A.G. DiFrancesco, J.G. Leong, T.D. Allston, K.J. Reed, Study of lattice expansion in CeO2 nanoparticles by transmission electron microscopy, J. Phys. Chem. C 113 (2009) 15155-15159.
DOI: 10.1021/jp903468m
Google Scholar
[3]
M. Issa, C. Petit, A. Brillard, J.F. Brillard, Oxidation of carbon by CeO2: Effect of the contact between carbon and catalyst particles, Fuel 87 (2008) 740-750.
DOI: 10.1016/j.fuel.2007.05.053
Google Scholar
[4]
F. Deganello, A. Martorana, Phase analysis and oxygen storage capacity of ceria-lanthana-based TWC promoters prepared by sol-gel routes, J. Solid State Chem. 163 (2002) 527-533.
DOI: 10.1006/jssc.2001.9442
Google Scholar
[5]
H.J. Quah, K.Y. Cheong, Z. Hassan, Z. Lockman, F.A. Jasni, W.F. Lim, Effects of postdeposition annealing in argon ambient on metallorganic decomposed CeO2 gate spin coated on silicon, J. Electrochem. Soc. 157 (2010) H6-H12.
DOI: 10.1149/1.3244214
Google Scholar
[6]
W.F. Lim, K.Y. Cheong, Z. Lockman, Physical characterization of post-deposition annealed metal-organic decomposed cerium oxide film spin-coated on 4H-silicon carbide, J. Alloys Compd. 497 (2010) 195-200.
DOI: 10.1016/j.jallcom.2010.03.009
Google Scholar
[7]
H.J. Quah, W.F. Lim, K.Y. Cheong, Z. Hassan, Z. Lockman, Comparison of metal-organic decomposed (MOD) cerium oxide (CeO2) gate deposited on GaN and SiC substrates, J. Cryst. Growth 326 (2011) 2-8.
DOI: 10.1016/j.jcrysgro.2011.01.040
Google Scholar
[8]
W.F. Lim, K.Y. Cheong, Z. Lockman, Physical and electrical characteristics of metal-organic decomposed CeO2 gate spin-coated on 4H-SiC, Appl. Phys. A: Mater. Sci. Proc. 103 (2011) 1067-1075.
DOI: 10.1007/s00339-010-6039-8
Google Scholar
[9]
W.F. Lim, K.Y. Cheong, Influence of post-deposition annealing in oxygen ambient on metal-organic decomposed CeO2 film spin coated on 4H-SiC, J. Mater. Sci: Mater. Electron. 23 (2012) 257-266.
DOI: 10.1007/s10854-011-0399-5
Google Scholar
[10]
A.B. Lopez, K. Krishna, M. Makkee, J.A. Moulijin, Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2, J. Catal. 230 (2005) 237. 248.
DOI: 10.1016/j.jcat.2004.11.027
Google Scholar
[11]
W.F. Lim, K.Y. Cheong, Effects of post-deposition annealing temperature on metal-organic decomposed lanthanum cerium oxide film as metal reactive oxide layer on 4H-SiC, Mater. Chem. Phys. 140 (2013) 622-633.
DOI: 10.1016/j.matchemphys.2013.04.016
Google Scholar
[12]
W.F. Lim, K.Y. Cheong, Structural and chemical studies of metal-organic decomposed LaxCeyOz thin film as a catalytic oxide on 4H-SiC as a function of postdeposition annealing ime, J. Phys. Chem. C 117 (2013) 14014-14024.
DOI: 10.1021/jp4025975
Google Scholar
[13]
W.F. Lim, Z. Lockman, K.Y. Cheong, Influence of post-deposition annealing on metal-organic decomposed lanthanum cerium oxide film, 2011 IEEE Regional Symposium on Micro and Nanoelectronics (2011) 24-27, DOI: 10. 1109/RSM. 2011. 6088283.
DOI: 10.1109/rsm.2011.6088283
Google Scholar
[14]
W.F. Lim, K.Y. Cheong, Z. Lockman, Effects of post-deposition annealing temperature and time on physical properties of metal-organic decomposed lanthanum cerium oxide thin film, Thin Solid Films 519 (2011) 5139-5145.
DOI: 10.1016/j.tsf.2011.01.072
Google Scholar
[15]
E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, London, (1982).
Google Scholar
[16]
W.F. Lim, Z. Lockman, K.Y. Cheong, Metal-oxide-semiconductor characteristics of lanthanum cerium oxide film on Si, Appl. Phys. A: Mater. Sci. Proc. 107 (2012) 459-467.
DOI: 10.1007/s00339-012-6763-3
Google Scholar
[17]
D.K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., Wiley, New York, (1998).
Google Scholar