Fe-TiO2 Nanoparticles by Hydrothermal Treatment with Photocatalytic Activity Enhancement

Article Preview

Abstract:

Fe-TiO2 nanoparticles with 5-9 nm sizes were prepared by sol gel method subsequently subjected to hydrothermal treatment at 150°C for 6 h. Titanium (IV) isopropoxide and iron (III) nitrate nonahydrate were used as precursor. The morphology, structure and composition of the Fe-TiO2 were investigated by X-ray diffraction (XRD), Transmission emission microscopy (TEM) and UV-vis spectroscopy (UV-vis). XRD analysis revealed the prepared samples was dominated with anatase phase and a trace of brookite phase. The TiO2 crystallite size was reduced as Fe content was increased. Compared with the pure TiO2 nanoparticles, the Fe-TiO2 nanoparticles exhibited higher photocatalytic activity in decolorizing methyl orange into non-toxic inorganic products under UV irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-43

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[2] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, ChemInform, 38 (2007) no-no.

Google Scholar

[3] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surface Science Reports, 63 (2008) 515-582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[4] D. Fan, Z. Weirong, W. Zhongbiao, Characterization and photocatalytic activities of C, N and S co-doped TiO 2 with 1D nanostructure prepared by the nano-confinement effect, Nanotechnology, 19 (2008) 365607.

DOI: 10.1088/0957-4484/19/36/365607

Google Scholar

[5] D. Dvoranová, V. Brezová, M. Mazúr, M.A. Malati, Investigations of metal-doped titanium dioxide photocatalysts, Applied Catalysis B: Environmental, 37 (2002) 91-105.

DOI: 10.1016/s0926-3373(01)00335-6

Google Scholar

[6] I.M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S.G. Neophytides, P. Falaras, Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation, Journal of catalysis, 220 (2003) 127-135.

DOI: 10.1016/s0021-9517(03)00241-0

Google Scholar

[7] C.A. Castro, A. Centeno, S.A. Giraldo, Iron promotion of the TiO2 photosensitization process towards the photocatalytic oxidation of azo dyes under solar-simulated light irradiation, Materials Chemistry and Physics, 129 (2011) 1176-1183.

DOI: 10.1016/j.matchemphys.2011.05.082

Google Scholar

[8] M. Zhou, J. Yu, B. Cheng, Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method, Journal of Hazardous Materials, 137 (2006) 1838-1847.

DOI: 10.1016/j.jhazmat.2006.05.028

Google Scholar

[9] G. Glaspell, A. Manivannan, Sol–gel synthesis and magnetic studies of titanium dioxide doped with 10% M (M= Fe, Mn and Ni), Journal of Cluster Science, 16 (2005) 501-513.

DOI: 10.1007/s10876-005-0023-z

Google Scholar

[10] F. Gracia, J.P. Holgado, F. Yubero, A.R. González-Elipe, Phase mixing in Fe/TiO2 thin films prepared by ion beam-induced chemical vapour deposition: optical and structural properties, Surface and Coatings Technology, 158–159 (2002) 552-557.

DOI: 10.1016/s0257-8972(02)00305-5

Google Scholar

[11] R. Alexandrescu, I. Morjan, M. Scarisoreanu, R. Birjega, E. Popovici, I. Soare, L. Gavrila-Florescu, I. Voicu, I. Sandu, F. Dumitrache, G. Prodan, E. Vasile, E. Figgemeier, Structural investigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis, Thin Solid Films, 515 (2007).

DOI: 10.1016/j.tsf.2007.03.106

Google Scholar

[12] M.A. Khan, S.I. Woo, O. Yang, Hydrothermally stabilized Fe (III) doped titania active under visible light for water splitting reaction, International Journal of Hydrogen Energy, 33 (2008) 5345-5351.

DOI: 10.1016/j.ijhydene.2008.07.119

Google Scholar

[13] J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization, Journal of Photochemistry and Photobiology A: Chemistry, 180 (2006) 196-204.

DOI: 10.1016/j.jphotochem.2005.10.017

Google Scholar

[14] S.A. Ibrahim, S. Sreekantan, Effect of pH on TiO2 Nanoparticles via Sol-Gel Method, Advanced Materials Research, 173 (2011) 184-189.

DOI: 10.4028/www.scientific.net/amr.173.184

Google Scholar

[15] C. -y. Wang, C. Böttcher, D.W. Bahnemann, J.K. Dohrmann, A comparative study of nanometer sized Fe (III)-doped TiO2 photocatalysts: synthesis, characterization and activity, Journal of Materials chemistry, 13 (2003) 2322-2329.

DOI: 10.1039/b303716a

Google Scholar

[16] N.A. Jamalluddin, A.Z. Abdullah, Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature, Ultrasonics Sonochemistry, 18 (2011) 669-678.

DOI: 10.1016/j.ultsonch.2010.09.004

Google Scholar

[17] N. Hafizah, I. Sopyan, Nanosized TiO 2 photocatalyst powder via sol-gel method: effect of hydrolysis degree on powder properties, International Journal of Photoenergy, 2009 (2009).

DOI: 10.1155/2009/962783

Google Scholar

[18] H. Li, G. Liu, S. Chen, Q. Liu, Novel Fe doped mesoporous TiO2 microspheres: Ultrasonic–hydrothermal synthesis, characterization, and photocatalytic properties, Physica E: Low-dimensional Systems and Nanostructures, 42 (2010) 1844-1849.

DOI: 10.1016/j.physe.2010.02.008

Google Scholar

[19] W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, The Journal of Physical Chemistry, 98 (1994) 13669-13679.

DOI: 10.1021/j100102a038

Google Scholar