[1]
L. Obreja, D. Pricop, N. Foca, V. Melnig, Platinum Nanoparticles Synthesis by Sonoelectrochemical Methods, Mater. Plast. 47 (2010) 42-47.
Google Scholar
[2]
B. Park, K. Cho, Y.S. Koo, S. Kim, Memory characteristics of platinum nanoparticle embedded MOS capacitors, Curr. Appl. Phys. 9 (2009) 1334-1337.
DOI: 10.1016/j.cap.2009.02.013
Google Scholar
[3]
P. C Ooi, K.C. Aw, K.A. Razak, S.R. Makhsin, W. Gao, Effects of metal electrodes and dielectric thickness on non-volatile memory with embedded gold nanoparticles in polymethylsilsesquioxane, Microelectron. Eng. 98 (2012) 74-79.
DOI: 10.1016/j.mee.2012.05.006
Google Scholar
[4]
Ch. Sargentis, K. Giannakopoulos, A. Travlos, D. Tsamakis, Dynamic behavior of charge in MOS devices embedded with Pt and Au nanoparticles, Mat. Sci. Semicon. Proc. 12 (2009) 57-63.
DOI: 10.1016/j.mssp.2009.09.002
Google Scholar
[5]
R. C. Jeff, Jr., M. Yun, B. Ramalingam, B. Lee, V. Misra, G. Triplett, S. Gangopadhyay, Charge storage characteristics of ultra-small Pt nanoparticle embedded GaAs based non-volatile memory, Appl. Phys. Lett. 99 (2011) 072104.
DOI: 10.1063/1.3625426
Google Scholar
[6]
J. Dufourcq, S. Bodnar, G. Gay, D. Lafond, P. Mur, G. Molas, J. P. Nieto, L. Vandroux, L. Jodin, F. Gustavo, Th. Baron, High density platinum nanocrystals for non-volatile memory applications, Appl. Phys. Lett. 92 (2008) 073102.
DOI: 10.1063/1.2840188
Google Scholar
[7]
B. Sturman, E. Podivilov, M. Gorkunov, Metal nanoparticles with sharp corners: Universal properties of plasmon resonances, Europhys. Lett. 101 (2012) 57009.
DOI: 10.1209/0295-5075/101/57009
Google Scholar
[8]
M. A. Mahmoud, R. Narayanan, M. A. El-Sayed, Enhancing Colloidal Metallic Nanocatalysis: Sharp Edges and Corners for Solid Nanoparticles and Cage Effect for Hollow Ones, Acc. Chem. Res. 46 (2013) 1795-1805.
DOI: 10.1021/ar3002359
Google Scholar
[9]
L. Wang, H. Wang, Y. Nemoto, Y. Yamauchi, Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid, Chem. Mater. 22 (2010) 2835-2841.
DOI: 10.1021/cm9038889
Google Scholar
[10]
S. Papp, R. Patakfalvi, I. Dekanyi, Formation and Stabilization of Noble Metal Nanoparticles, Croatia Chemica Acta. 80 (2007) 493.
Google Scholar
[11]
Q. Shen, L. Jiang, H. Zhang, Q. Min, W. Hou, J. J. Zhu, Three-dimensional Dendritic Pt Nanostructures: Sonoelectrochemical Synthesis and Electrochemical Applications, J. Phys. Chem. C. 112 (2008) 16385-16392.
DOI: 10.1021/jp8060043
Google Scholar
[12]
F. Franco, L. A. Perez-Maqueda, J. L. Perez-Rodriguez, The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. J. Colloid. Interface. Sci. 274 (2004) 107-17.
DOI: 10.1016/j.jcis.2003.12.003
Google Scholar
[13]
M. M. Jablonski, O. A. -E Soliman, M. M. Ibrahim, A. -E.H. Abd-Elgawas, Natural bioadhesive biodegradable nanoparticles-based topical ophthalmic formulations for sustained celecoxib release: in vitro study, J. Pharm. Sci. 2 (2013) 1-15.
DOI: 10.7243/2050-120x-2-7
Google Scholar
[14]
L. P. Goh, K. A. Razak, N. S. Ridhuan, K. Y. Cheong, P. C. Ooi, K. C. Aw, Direct formation of gold nanoparticles on substrates using a novel ZnO sacrificial templated-growth hydrothermal approach and their properties in organic memory device. Nanoscale Res. Lett. 7 (2012).
DOI: 10.1186/1556-276x-7-563
Google Scholar