Formation of Platinum Nanodendrites Embedded Organic Insulator for Memory Application

Article Preview

Abstract:

This work describes the formation of platinum nanodendrites (PtNDs) using the chemical reduction method. The PtNDs were formed with varying concentration of K2PtCl4 precursor (5-20 mM) and growth duration (8-16 min). The optimum concentration of K2PtCl4 was 15 mM whereby high crystalline nanodendrites with an average size of 118 nm were produced. Aggregation of nanodendrites occurred when the growth duration was prolonged to more than 12 minutes. The morphology and size of PtNDs were characterized by using a transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM) and X-ray diffractometer (XRD). Additionally, the memory characteristics of PtNDs embedded in polymethylsilsesquioxanes (PMSSQ)/Si with gold electrodes were studied in this work. PtNDs played a role as charge-trapped sites and showed good memory effect when embedded in PMSSQ. Optimum memory properties of PMSSQ-embedded PtNDs were obtained for PtNDs synthesized with 15 mM K2PtCl4 concentration at 12 min of growth duration with 170 electrons trapped per PtNDs and Vth of 2.8 V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-47

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Obreja, D. Pricop, N. Foca, V. Melnig, Platinum Nanoparticles Synthesis by Sonoelectrochemical Methods, Mater. Plast. 47 (2010) 42-47.

Google Scholar

[2] B. Park, K. Cho, Y.S. Koo, S. Kim, Memory characteristics of platinum nanoparticle embedded MOS capacitors, Curr. Appl. Phys. 9 (2009) 1334-1337.

DOI: 10.1016/j.cap.2009.02.013

Google Scholar

[3] P. C Ooi, K.C. Aw, K.A. Razak, S.R. Makhsin, W. Gao, Effects of metal electrodes and dielectric thickness on non-volatile memory with embedded gold nanoparticles in polymethylsilsesquioxane, Microelectron. Eng. 98 (2012) 74-79.

DOI: 10.1016/j.mee.2012.05.006

Google Scholar

[4] Ch. Sargentis, K. Giannakopoulos, A. Travlos, D. Tsamakis, Dynamic behavior of charge in MOS devices embedded with Pt and Au nanoparticles, Mat. Sci. Semicon. Proc. 12 (2009) 57-63.

DOI: 10.1016/j.mssp.2009.09.002

Google Scholar

[5] R. C. Jeff, Jr., M. Yun, B. Ramalingam, B. Lee, V. Misra, G. Triplett, S. Gangopadhyay, Charge storage characteristics of ultra-small Pt nanoparticle embedded GaAs based non-volatile memory, Appl. Phys. Lett. 99 (2011) 072104.

DOI: 10.1063/1.3625426

Google Scholar

[6] J. Dufourcq, S. Bodnar, G. Gay, D. Lafond, P. Mur, G. Molas, J. P. Nieto, L. Vandroux, L. Jodin, F. Gustavo, Th. Baron, High density platinum nanocrystals for non-volatile memory applications, Appl. Phys. Lett. 92 (2008) 073102.

DOI: 10.1063/1.2840188

Google Scholar

[7] B. Sturman, E. Podivilov, M. Gorkunov, Metal nanoparticles with sharp corners: Universal properties of plasmon resonances, Europhys. Lett. 101 (2012) 57009.

DOI: 10.1209/0295-5075/101/57009

Google Scholar

[8] M. A. Mahmoud, R. Narayanan, M. A. El-Sayed, Enhancing Colloidal Metallic Nanocatalysis: Sharp Edges and Corners for Solid Nanoparticles and Cage Effect for Hollow Ones, Acc. Chem. Res. 46 (2013) 1795-1805.

DOI: 10.1021/ar3002359

Google Scholar

[9] L. Wang, H. Wang, Y. Nemoto, Y. Yamauchi, Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid, Chem. Mater. 22 (2010) 2835-2841.

DOI: 10.1021/cm9038889

Google Scholar

[10] S. Papp, R. Patakfalvi, I. Dekanyi, Formation and Stabilization of Noble Metal Nanoparticles, Croatia Chemica Acta. 80 (2007) 493.

Google Scholar

[11] Q. Shen, L. Jiang, H. Zhang, Q. Min, W. Hou, J. J. Zhu, Three-dimensional Dendritic Pt Nanostructures: Sonoelectrochemical Synthesis and Electrochemical Applications, J. Phys. Chem. C. 112 (2008) 16385-16392.

DOI: 10.1021/jp8060043

Google Scholar

[12] F. Franco, L. A. Perez-Maqueda, J. L. Perez-Rodriguez, The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. J. Colloid. Interface. Sci. 274 (2004) 107-17.

DOI: 10.1016/j.jcis.2003.12.003

Google Scholar

[13] M. M. Jablonski, O. A. -E Soliman, M. M. Ibrahim, A. -E.H. Abd-Elgawas, Natural bioadhesive biodegradable nanoparticles-based topical ophthalmic formulations for sustained celecoxib release: in vitro study, J. Pharm. Sci. 2 (2013) 1-15.

DOI: 10.7243/2050-120x-2-7

Google Scholar

[14] L. P. Goh, K. A. Razak, N. S. Ridhuan, K. Y. Cheong, P. C. Ooi, K. C. Aw, Direct formation of gold nanoparticles on substrates using a novel ZnO sacrificial templated-growth hydrothermal approach and their properties in organic memory device. Nanoscale Res. Lett. 7 (2012).

DOI: 10.1186/1556-276x-7-563

Google Scholar