Conductive Nanocomposite Aligned Fibers of PVA-AgNPs-PEDOT/PSS

Article Preview

Abstract:

Poly (vinyl alcohol)-silver nanoparticles (PVA:AgNPs), and poly (vinyl alcohol)-silver nanoparticles-poly (3, 4-ethylene dioxythiophene)/poly (styrene sulfonate) (PVA:AgNPs: PEDOT/ PSS) were generated as ultra-fine electrospun fibers using the aligned fiber mat and aligned single fiber techniques. SEM and TEM were used to confirm the morphology, diameter size, and fiber alignment of the ultra-fine fibers. A two-probe technique was utilized to assess the electrical conductivity of the ultrafine fibers. The highest conductivity of PVA:AgNPs, (10 %w/v:0.75 %w/v) with a fiber diameter of 0.152 μm, with voltage applied at 17.5 kV within a 20 min collection period in the electrospinning process, was 43.20 S/cm; whereas the highest conductivity of PVA:AgNPs: PEDOT/PSS, (10 %w/v:0.25 %w/v:0.084 %w/v), with a fiber diameter of 0.158 μm and voltage applied at 17.5 kV within a 45 min collection period in the electrospinning process, was 92.18 S/cm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

1009-1019

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.S. Chronakis, S. Grapenson and A. Jakob: Polymer Vol. 47 (2006), p.1597–1603.

Google Scholar

[2] V. Saxena and B.D. Malhotra: Current Applied Physics Vol 3 (2003), p.293–305.

Google Scholar

[3] D. Aussawasathien, J.H. Dong and L. Dai: Synthetic Metals Vol. 154 (2005), p.37–40.

Google Scholar

[4] Z. Du, C. Li, L. Li, M. Zhang, S. Xu and T. Wang: Materials Science and Engineering C Vol. 29 (2009), p.1794–1797.

Google Scholar

[5] A. Babel, D. Li, Y. Xia and S.A. Jenekhe: Macromolecules Vol. 38(11) (2005), pp.4705-4711.

Google Scholar

[6] P. Supaphol, P. Aramwit, P. Sangsanoh, S. Changsarn, S. Chuangchote and M.M. Villiers: Novel Polymers and Nanoscience (Transworld Research Network, India 2008).

DOI: 10.1002/chin.201139263

Google Scholar

[7] A. Laforgue, and L. Robitaille: Synthetic Metals Vol. 158 (2008), p.577–584.

Google Scholar

[8] I. Jun, S. Jeong and H. Shin: Biomaterials Vol. 30 (2009), p.2038–(2047).

Google Scholar

[9] J.L. Duvail, P. Re´tho, S. Garreau, G. Louarn, C. Godon, and S. Demoustier-Champagne: Synthetic Metals Vol. 131 (2002), p.123–128. Information on www. elsevier. com/locate/synmet.

DOI: 10.1016/s0379-6779(02)00195-9

Google Scholar

[10] J. Jang: Adv Polym Sci Vol. 199 (2006), p.189–259.

Google Scholar

[11] W.E. Teo and S. Ramakrishna: Composites Science and Technology Vol. 69 (2009), p.1804– 1817.

Google Scholar

[12] W.K. Son, J.H. Youk, and W.H. Park: Carbohydrate Polymers Vol. 65 (2006), p.430–434.

Google Scholar

[13] D. Cho, N. Hoepker and M.W. Frey: Materials Letters Vol. 68 (2012), pp.293-295.

Google Scholar

[14] Q. Xu, Y. Li, W. Feng and X. Yuan: Synthetic Metals Vol. 160 (2010), p.88–93.

Google Scholar

[15] L. Limsavarn, V. Sritaveesinsub and S.T. Dubas: Materials Letters Vol. 61 (2007), p.3048–3051.

DOI: 10.1016/j.matlet.2006.10.072

Google Scholar

[16] B. Adhikari and S. Majumdar: Progress in Polymer Science Vol. 29 (2004), p.699–766.

Google Scholar

[17] Y.C. Ahn, S.K. Park, G.T. Kim, Y.J. Hwang, C.G. Lee, H.S. Shin and J.K. Lee: Current Applied Physics Vol. 6 (2006), p.1030–1035.

Google Scholar

[18] G.Y. Liao, X.P. Zhou, L. Chen, X.Y. Zeng, X.L. Xie and Y.W. Mai: Composites Science and Technology Vol. 72 (2012), pp.248-255.

Google Scholar