[1]
X. H. Huang, J. P. Tu, Z. Y. Zeng, et al. J. Electrochem. Soc. 2008, 155: A438−441.
Google Scholar
[2]
L.Q. Tao, J.T. Zai, K.X. Wang, et al. 3D-hierarchical NiO-graphene nanosheet composites as anodes for lithium ionbatteries with improved reversible capacity and cycle stability, RSC Advances, 2012 (2): 3410.
DOI: 10.1039/c2ra00963c
Google Scholar
[3]
H. Huang, W.J. Zhu, X.Y. Tao, et al. Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries, ACS Applied Materials and Interfaces, 2012, 4: 5974.
DOI: 10.1021/am301641y
Google Scholar
[4]
Y.J. Mai, X.L. Wang, J.Y. Xiang, et al. CuO/graphenecomposite as anode materials for lithium-ion batteries, Electrochimica Acta, 2011, 56: 2306.
DOI: 10.1016/j.electacta.2010.11.036
Google Scholar
[5]
X. Xu, R. Cao, S. Jeong, et al. Spindle-like mesoporous alpha-Fe2O3anode mate-rial prepared from MOF template for high-rate lithium batteries, Nano Letters, 2012, 12: 4988.
DOI: 10.1021/nl302618s
Google Scholar
[6]
D. Lu, Y. Zhang, L. Wang, et al. Sensitive detection of acetaminophen based on Fe3O4 nanoparticles-coated poly(diallyldimethylammoniumchloride)-functionalized graphene nanocomposite film, Talanta, 2012, 88: 181–186.
DOI: 10.1016/j.talanta.2011.10.029
Google Scholar
[7]
X.J. Zhu, Z.P. Guo, P. Zhang, et al. Highly porous reticular tin–cobalt oxide composite thin film anodes for lithium ionbatteries, Journal of Materials Chemistry, 2009, 19: 8360.
DOI: 10.1039/b913993a
Google Scholar
[8]
V. Singh, D. Joung, L. Zhai, et al. Graphene based materials: past, present and future, Progress in Material Science, 2011, 56: 1178–1271.
DOI: 10.1016/j.pmatsci.2011.03.003
Google Scholar
[9]
Hummers F. W. S, Offeman R. E, Preparation of graphitic oxide [J]. Journal of American Chemical Society, 1958, 80: 1339.
DOI: 10.1021/ja01539a017
Google Scholar
[10]
H. N. Lim, N. M. Huang, S. S. Lin, et al. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth, International Journal of Nanomedicine, 2011, 6: 1817-1823.
DOI: 10.2147/ijn.s23392
Google Scholar
[11]
P. S. Teo, H. N. Lim, N. M. Huang, et al. Room temperature in situ chemical synthesis of Fe3O4/graphene [J]. Ceramics International, 2012, 38: 6411-6416.
DOI: 10.1016/j.ceramint.2012.05.014
Google Scholar
[12]
Q. Q. Xiong, J. P. Tu, Y. Lu, et al. Synthesis of hierarchical hollow-structured single-crystalline magnetite (Fe3O4) microspheres: the highly powerful storage versus lithium as an anode for lithium ion batteries, The Journal of Physical Chemistry C, 2012, 116, 6495−6502.
DOI: 10.1021/jp3002178
Google Scholar
[13]
Y. Xue, H. Chen, D. Yu, et al. Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications, Chemical Communications, 2011, 47: 11689–11691.
DOI: 10.1039/c1cc14789g
Google Scholar
[14]
H. He, C. Gao, Supraparamagmetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles, Applied Materials and Interfaces, 2010, 2: 3201-3210.
DOI: 10.1021/am100673g
Google Scholar