Determination of Ruthenium in Waste Ruthenium Catalysts Using Inductively Coupled Plasma Optical Emission Spectrometry after Sample Digestion by High Temperature Fusion

Article Preview

Abstract:

A technique for determination of Ru in waste ruthenium catalysts using ICP-OES after sample digestion by high temperature fusion with NaOH-NaNO3 mixture was described. Such experiment conditions were investigated as the influence of sample digestion methods, fusion time, fusion temperature, the dosage of NaOH-NaNO3 mixture and interfering ions on the determination. Under the optimized conditions, the limits of detection (LODs) of Ru for tested solutions were 10 ng mL-1. The relative standard deviations (RSDs) for Ru were 2.01 (CRu = 1 mg L-1, n = 7). The linear ranges of calibration graphs for Ru were 0 ~ 100.00 mg L-1. The proposed method was applied to determine the practical samples with good recoveries and satisfactory results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

603-606

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.K. Essumang: Bull. Environ. Contam. Toxicol Vol. 84 (2010), p.720.

Google Scholar

[2] M. Takeda, H. Minowa and M. Ebihara: J. Radioanal. Nucl. Chem Vol. 272 (2007), p.363.

Google Scholar

[3] S. Scaccia and B. Goszczynska: Talanta Vol. 63 (2004), p.791.

Google Scholar

[4] M. Taddia and P. Sternini: Ann. Chim Vol. 91 (2001), p.239.

Google Scholar

[5] J.L. Fabec: At. Spectrosc Vol. 4 (1983), p.46.

Google Scholar

[6] J.L. Fabec and M.L. Ruschak: Anal. Chem Vol. 55 (1983), p.2241.

Google Scholar

[7] M. Balcerzak: Crit. Rev. Anal. Chem Vol. 32 (2002), p.181.

Google Scholar

[8] S. Zimmermann, C.M. Menzel, Z. Berner, J. -D. Eckhardt, D. Stüben, F. Alt, J. Messerschmidt, H. Taraschewski and B. Sures: Anal. Chim. Acta Vol. 439 (2001), p.203.

DOI: 10.1016/s0003-2670(01)01041-8

Google Scholar

[9] J.D. Whiteley and F. Murray: Sci. Total Environ Vol. 317 (2003), p.121.

Google Scholar

[10] B. Sures, S. Zimmermann, J. Messerschmidt, A. Von Bohlen and F. Alt: Environ. Pollut Vol. 113 (2001), p.341.

Google Scholar

[11] B. Sures, S. Zimmermann, C. Sonntag, D. Stuben and H. Taraschewski: Environ. Pollut Vol. 122 (2003), p.401.

Google Scholar

[12] T. Meisel, N. Fellner and J. Moser: J. Anal. Atom. Spectrom Vol. 18 (2003), p.720.

Google Scholar

[13] D. Cinti, M. Angelone, U. Masi and C. Cremisini: Sci. Total Environ Vol. 293 (2002), p.47.

Google Scholar

[14] R. Djingova, H. Heidenreich, P. Kovacheva and B. Markert: Anal. Chim. Acta Vol. 489 (2003), p.245.

Google Scholar

[15] K. Boch, M. Schuster, G. Risse and M. Schwarzer: Anal. Chim. Acta Vol. 459 (2002), p.257.

Google Scholar

[16] O.V. Borisov, D.M. Coleman, K.A. Oudsema and R.O. Carter III: J. Anal. Atom. Spectrom Vol. 12 (1997), p.239.

Google Scholar

[17] M. Balcerzak: Anal. Sci Vol. 18 (2002), p.737.

Google Scholar

[18] D. Savard, S.J. Barnes and T. Meisel: Geostand. Geoanal. Res Vol. 34 (2010), p.281.

Google Scholar

[19] L. Qi, J. Gao, X. Huang, J. Hu, M.F. Zhou and H. Zhong: J. Anal. At. Spectrom Vol. 26 (2011), p. (1900).

Google Scholar

[20] M. Balcerzak, E. Święcicka and E. Balukiewicz: Talanta Vol. 48 (1999), p.39.

Google Scholar