Determination of Platinum in Waste Platinum-Loaded Carbon Catalyst Samples Using Teflon Pressure Vessel-Assisted Sample Digestion and ICP-OES

Article Preview

Abstract:

A novel method for the determination of platinum in waste platinum-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by Teflon pressure digestion vessel with aqua regia. Such experiment conditions were investigated as the influence of sample dissolution methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the limit of detection (LODs) of Pt for tested solution was 15 ng mL-1. The relative standard deviations (RSDs) for Pt was 2.35 % (CPt = 5 mg L-1, n = 7). The linear range of calibration graph for Pt was 0 ~ 150.00 mg L-1. The proposed method was applied to determine the practical samples with good recoveries and satisfactory results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

599-602

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.B. Alfassi, T.U. Probst and B. Rietz: Anal. Chim. Acta Vol. 360 (1998), p.243.

Google Scholar

[2] J. Kučera and J. Drobnik: J. Radioanal. Nucl. Chem Vol. 75 (1982), p.71.

Google Scholar

[3] A.F. LeRoy, M.L. Wehling, H.L. Sponseller and W.S. Friauf: Biochem. Medicine Vol. 18 (1997), p.184.

Google Scholar

[4] C.B. Ojeda, F.S. Rojas, J.M.C. Pavón: Anal. Chim. Acta Vol. 494 (2003), p.97.

Google Scholar

[5] S. Woińska and B. Godlewska-Żyłkiewicz: Spectrochimica Acta Part B: Atomic Spectroscopy. Vol. 66 (2011), p.522.

DOI: 10.1016/j.sab.2011.03.009

Google Scholar

[6] V.D. Noto and L. DallaáVia: Analyst Vol. 120 (1995), p.1669.

Google Scholar

[7] J.L. Fabec and M.L. Ruschak: Anal. Chem Vol. 55 (1983), p.2241.

Google Scholar

[8] S. Huszal, J. Kowalska and M. Krzeminska: Electroanalysis Vol. 17 (2005), p.299.

Google Scholar

[9] J. Kowalska, S. Huszal and M.G. Sawicki: Electroanalysis Vol. 16 (2004), p.1266.

Google Scholar

[10] I. Jarvis, M.M. Totland and K.E. Jarvis: Analyst Vol. 122 (1997), p.19.

Google Scholar

[11] S. Zimmermann, C.M. Menzel, Z. Berner, J. -D. Eckhardt, D. Stüben, F. Alt, J. Messerschmidt, H. Taraschewski and B. Sures: Anal. Chim. Acta Vol. 439 (2001), p.203.

DOI: 10.1016/s0003-2670(01)01041-8

Google Scholar

[12] J.D. Whiteley and F. Murray: Sci. Total Environ Vol. 317 (2003), p.121.

Google Scholar

[13] B. Sures, S. Zimmermann, J. Messerschmidt, A. Von Bohlen and F. Alt: Environ. Pollut Vol. 113 (2001), p.341.

Google Scholar

[14] B. Sures, S. Zimmermann, C. Sonntag, D. Stuben and H. Taraschewski: Environ. Pollut Vol. 122 (2003), p.401.

Google Scholar

[15] T. Meisel, N. Fellner and J. Moser: J. Anal. Atom. Spectrom Vol. 18 (2003), p.720.

Google Scholar

[16] D. Cinti, M. Angelone, U. Masi and C. Cremisini: Sci. Total Environ Vol. 293 (2002), p.47.

Google Scholar

[17] R. Djingova, H. Heidenreich, P. Kovacheva and B. Markert: Anal. Chim. Acta Vol. 489 (2003), p.245.

Google Scholar

[18] K. Boch, M. Schuster, G. Risse and M. Schwarzer: Anal. Chim. Acta Vol. 459 (2002), p.257.

Google Scholar

[19] O.V. Borisov, D.M. Coleman, K.A. Oudsema and R.O. Carter III: J. Anal. Atom. Spectrom Vol. 12 (1997), p.239.

Google Scholar

[20] X.H. Yang and L.Q. Zhang: Applied Chemical Industry Vol. 39 (2012), p.1778.

Google Scholar