Pressure-Induced Cationic Disordering in Pyrochlore Oxides (La1-xCex)2Zr2O7 and Enhancement of Compressibility

Article Preview

Abstract:

Pyrochlore oxides La2Zr2O7, Ce2Zr2O7 and their solid solutions were studied by in situ x-ray diffraction (XRD) measurement at high pressures. Pressure dependence of cationic disordering was derived from Rietveld refinement of the XRD patterns. The results indicated that the mixed occupancy in the cation site enhanced the compressibility obviously. All the pyrochlore structure became unstable at ~20 GPa and an orthorhombic high-pressure phase formed. The cations changed from the ordered state in pyrochlore to a disordered state in the high-pressure phase. The high-pressure phase is about 8% denser than the pyrochlore phase and not stable at ambient conditions and a disordered defect-fluorite structure was quenched for all the samples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

583-587

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Subramanian, G. Aravamudan, and G.V. Subba Rao, Prog. Solid State Chem. 15(1983), p.55.

Google Scholar

[2] S. Kramer, M. Spears, H. L. Tuller, Solid State Ionics 72(1994), p.59.

Google Scholar

[3] S. A. Kramer, H. L. Tuller, Solid State Ionics 82(1995), p.15.

Google Scholar

[4] R.C. Ewing, W. J. Weber, J. Lian, J. Appl. Phys. 95(2004), p.5949.

Google Scholar

[5] W. J. Weber, R. C. Ewing, Science 289(2000), p. (2051).

Google Scholar

[6] N. J. Hess, B. D. Begg, S. D. Conradson, D. E. McCready, P. L. Gassman, W. J. Weber, J. Phys. Chem. B 106(2002), p.4663.

Google Scholar

[7] J. Lian, L.M. Wang, J. Chen, K. Sun, R.C. Ewing, J.M. Farmer, and L.A. Boatner, Acta Mat. 51(2003), p.1493.

Google Scholar

[8] M. P. Van Dijk, F. C. Mijlhoff, A. J. Burggraaf, J. Solid State Chem. 62(1986), p.377.

Google Scholar

[9] K.E. Sickafus, R.W. Grimes, J.A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S.M. Corish, C.R. Stanek, and B.P. Uberuaga, Nature Mater. 6(2007), p.217.

DOI: 10.1038/nmat1842

Google Scholar

[10] S.X. Wang, B.D. Begg, L.M. Wang, R.C. Ewing, W.J. Weber, and K.V.G. Kutty, J. Mater. Res. 14(1999), p.4470.

Google Scholar

[11] F. X. Zhang, B. Manoun, S. K. Saxena, and C. S. Zha, Appl. Phys. Lett. 86 (2005), p.18190.

Google Scholar

[12] F. X. Zhang, J. Lian, U. Becker, R. C. Ewing, L. M. Wang, L. A. Boatner, J. Z. Hu, S.K. Saxena, Phys. Rev. B 74(2006), p.174116.

Google Scholar

[13] F. X. Zhang, J. Lian, U. Becker, R. C. Ewing, J. Z. Hu, and S. K. Saxena, Phys. Rev. B 76 (2007), p.214104.

Google Scholar

[14] F. X. Zhang, J. W. Wang, J. Lian, M. K. Lang, U. Becker, R. C. Ewing, Phys. Rev. Lett. 100 (2008), p.045503.

Google Scholar

[15] F. X. Zhang, M. Lang, U. Becker, R. C. Ewing, J. Lian, Appl. Phys. Lett. 92(2008), p.011909.

Google Scholar

[16] H. K. Mao, J. Xu, P. M. Bell, J. Geophys. Res. 91(1986), p.4673.

Google Scholar

[17] A. P. Hammersley, Fit 2d, ESRF, 1998, Grenoble, France.

Google Scholar

[18] J. Rodriguez-Carvajal, Fullprof 2k, 2001, France.

Google Scholar

[19] N. Garg, K.K. Pandey, C. Murli, K. V. Shanavas, B. P. Mandal, A. K. Tyagi, S. M. Sharma, Phys. Rev. B 77(2008), p.214105.

Google Scholar