[1]
Afridi H I, Kazi T G, Arain M B, et al. Determination of cadmium and lead in biological samples by three ultrasonic-based samples treatment procedures followed by electrothermal atomic absorption spectrometry[J]. Journal of AOAC International, 90(2): 470-478 (2007).
DOI: 10.1093/jaoac/90.2.470
Google Scholar
[2]
Liu H, Chen S L, Li C, et al. Sequence Determination of Cd and Pb in Honey by Incomplete Digestion-High Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry[J]. Applied Mechanics and Materials, 2014, 511: 22-27.
DOI: 10.4028/www.scientific.net/amm.511-512.22
Google Scholar
[3]
REN Ting, ZHAO Li-jiao, ZHONG Ru-gang. Determination of Aluminum in Wheat Flour Food by Microwave Digestion-High Resolution Continuous Source Graphite Furnace Atomic Absorption Spectrometry[J]. Spectroscopy and Spectral Analysis, 31(12): 3388-3391 (2011).
Google Scholar
[4]
LIU L, YU M. Determination of calcium and magnesium in gelatin by noncomplete digestion-flame atomic absortion spectrometry [J]. Metallurgical Analysis, 5: 015 (2004).
Google Scholar
[5]
Nunes L S, Barbosa J T P, Fernandes A P, et al. Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation[J]. Food chemistry, 127(2): 780-783 (2011).
DOI: 10.1016/j.foodchem.2010.12.147
Google Scholar
[6]
Borges A R, Becker E M, Lequeux C, et al. Method development for the determination of cadmium in fertilizer samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and slurry sampling[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 66(7): 529-535 (2011).
DOI: 10.1016/j.sab.2011.04.004
Google Scholar
[7]
Lepri F G, Borges D L G, Araujo R G O, et al. Determination of heavy metals in activated charcoals and carbon black for Lyocell fiber production using direct solid sampling high-resolution continuum source graphite furnace atomic absorption and inductively coupled plasma optical emission spectrometry[J]. Talanta, 81(3): 980-987 (2010).
DOI: 10.1016/j.talanta.2010.01.050
Google Scholar
[8]
Lyra F H, Carneiro M T W D, Brandão G P, et al. Determination of Na, K, Ca and Mg in biodiesel samples by flame atomic absorption spectrometry (F AAS) using microemulsion as sample preparation[J]. Microchemical Journal, 2010, 96(1): 180-185.
DOI: 10.1016/j.microc.2010.03.005
Google Scholar
[9]
Amais R S, Garcia E E, Monteiro M R, et al. Determination of Ca, Mg, and Zn in biodiesel microemulsions by FAAS using discrete nebulization[J]. Fuel, 2012, 93: 167-171.
DOI: 10.1016/j.fuel.2011.10.042
Google Scholar
[10]
Oliveira S R, Gomes Neto J A, Nóbrega J A, et al. Determination of macro-and micronutrients in plant leaves by high-resolution continuum source flame atomic absorption spectrometry combining instrumental and sample preparation strategies[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(4): 316-320.
DOI: 10.1016/j.sab.2010.02.003
Google Scholar
[11]
Resano M, Briceño J, Belarra M A. Direct determination of Hg in polymers by solid sampling-graphite furnace atomic absorption spectrometry: a comparison of the performance of line source and continuum source instrumentation[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64(6): 520-529 (2009).
DOI: 10.1016/j.sab.2009.03.017
Google Scholar
[12]
Dittert I M, Silva J S A, Araujo R G O, et al. Direct and simultaneous determination of Cr and Fe in crude oil using high-resolution continuum source graphite furnace atomic absorption spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64(6): 537-543 (2009).
DOI: 10.1016/j.sab.2009.02.006
Google Scholar