Effect of Hot Air Convection Drying Temperatures on Physical and Chemical Properties of Germinated Sweet Corn

Article Preview

Abstract:

The effects of hot air drying temperatures (40-80°C) on apparent density, void fraction, shrinkage, total phenolics, total flavonoids and reducing power in germinated corn were investigated. The physical properties: apparent density, void fraction and shrinkage at moisture contents ranging from 13 to 35% dry-basis were determined using standard techniques. The result found that apparent density and the void fraction were linear in relation to the initial moisture contents. The apparent density increased from 44 to 50 kg/m3. The void fraction decreased from 78 to 58% with increasing moisture content. The chemical property resulted in 40°C hot air convection drying enhances total phenolics and total flavonoids to 6.41% and 50.00%, respectively, when compared with the control. Higher drying temperature resulted in lower total phenolic, total flavonoid content and reducing power of germinated sweet corn compared with the control.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

663-668

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Thai junior encyclopedia project by Royal Command of His Majesty the King, Corn, Vol. 3(2014).

Google Scholar

[2] R. Modgil, R. Joshi, R. Gupta, R. Verma and S. Anand: Journal of Food Science and Technology-Mysore Vol. 46(6)(2009), p.591–594.

Google Scholar

[3] A.M. Chuah, Y.C. Lee, T. Yamaguchi, H. Takamura, L.J. Yin and T. Matoba: Food Chemistry Vol. 111(2008), p.20–28.

Google Scholar

[4] S. Soponronnarit, A. Nathakaranakule, A. Jirajindalert and C. Taechapairoj: Journal of Food Engineering Vol. 75(2005), p.423–432.

DOI: 10.1016/j.jfoodeng.2005.04.058

Google Scholar

[5] O. Bualuang, S. Tirawanichakul and Y. Tirawanichakul: Asean Journal of Chemical Engineering Vol. 11(2)(2011).

Google Scholar

[6] M.R. Ochoa, A.G. Kesseler, B.N. Pirone, C.A. Márquez and A. De Michelis: Drying Technology: An International Journal Vol. 20(1)(2002), pp.147-156.

DOI: 10.1081/drt-120001371

Google Scholar

[7] Y.L. Singleton and J.A. Rossi: American Journal of Oenology and Viticulture Vol. 16 (1965), pp.144-158.

Google Scholar

[8] C. Chang, M. Yang, H. Wen and J. Chern: Journal of Food and Drug Analysis Vol. 10(2002), pp.178-182.

Google Scholar

[9] A. Strivastava, S.R. Harish and T. Shivanandappa: LWT-Food Science and Technology Vol. 39(2006), pp.1059-1065.

Google Scholar

[10] B.S. Reddy and A. Chakraverty: Biosystems Engineering Vol. 88(4)(2004), pp.461-466.

Google Scholar

[11] L. Mayor and A.M. Sereno: Journal of Food Engineering Vol. 61(3)(2004), p.373–386.

Google Scholar

[12] Z. Yan, M.J. Sousa-Gallagher and F.A.R. Oliveira: Journal of Food Engineering Vol. 84(2008), p.430–440.

Google Scholar

[13] A.K. Ghimeray, P. Sharma, P. Phoutaxay, T. Salitxay, S.H. Woo, S.U. Park and C.H. Park: Journal of Cereal Science Vol. 59(2014), pp.167-172.

DOI: 10.1016/j.jcs.2013.12.007

Google Scholar

[14] S.H. Eom, H.S. Park, D.W. Seo, W.W. Kim and D.H. Cho: Food Science Biotechnology Vol. 18(2009), pp.362-366.

Google Scholar

[15] T. Wang, Y. Zhu, X. Sun, J. Raddatz, Z. Zhou and G. Chen: Food Chemistry Vol. 152(2014), pp.37-45.

Google Scholar

[16] M.H. Gordon: Food antioxidants Elsevier Applied Science, (1990), p.1–18.

Google Scholar

[17] G.K. Jayaprakasha, P.S. Negi, S. Sikder and K.K. Sakariah: Journal of Bioscience Vol. 55(2000), pp.1030-1034.

Google Scholar

[18] Y. Zou, Y. Lu and D. Wei: Journal of Agriculture and Food Chemistry Vol. 52(16)(2004), pp.5032-5039.

Google Scholar

[19] A.K. Bejar, N. Kechaou and N.B. Mihoubi: Journal of Food Processing and Technology Vol. 2: 109(2011).

Google Scholar