Synthesis of Cu Nanowires by the Self-Assembly Growth Process

Article Preview

Abstract:

The ultralong copper nanowires (Cu NWs) with diameter of 90±10 nm and length over 20 μm were synthesized by the self-assembly growth process, in which the copper ions were reduced with hydrazine in an aqueous solution containing NaOH and ethylenediamine (EDA). The prepared Cu NWs were characterized by XRD, SEM and TEM. The results indicate that the ultralong Cu NWs product almost containing no particles can be obtained at 80 °C for 1 h with a proper concentration of EDA. During the growth of Cu NWs, as the EDA moleculars are possibly preferentially absorbed onto the crystal plane of (110), the gowth of Cu NW will be oriented along the crystal plane of (111).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-333

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.Q. Zhang, R.R. Wang, M.C. Wen, D. Weng, X. Cui, J. Sun, H.X. Li, Y.F. Lu, J. Am. Chem. Soc. 134 (2012) 14283-14286.

Google Scholar

[2] Z.B. Yu, Q.W. Zhang, L. Li, Q. Chen, X.F. Niu, J. Liu, Q.B. Pei, Adv. Mater. 23 (2011) 664-668.

Google Scholar

[3] G.W. Hsieh, P. Beecher, F.M. Li, P. Servati, A. Colli, A. Fasoli, D. Chu, A. Nathan, B. Ong, J. Robertson, A.C. Ferrari, W.I. Milne, Physic. E. Low-dimensional Systems and Nanostructures 40 (2008) 2406-2413.

DOI: 10.1016/j.physe.2007.10.044

Google Scholar

[4] A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, B.J. Wiley, Adv. Mater. 22 (2010) 3558-3563.

Google Scholar

[5] H. Wu, L.B. Hu, M.W. Rowell, D.S. Kong, J. J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, Y. Cui, Nano. lett. 10 (2010) 4242-4248.

DOI: 10.1021/nl102725k

Google Scholar

[6] M. Mohl, P. Pusztai, A. Kukovecz, Z. Konya, Langmuir 26 (2010) 16496-16502.

DOI: 10.1021/la101385e

Google Scholar

[7] M.S. Jin, G.N. He, H. Zhang, J. Zeng, Z.X. Xie, Y.N. Xia, Angew. Chem. Edit. 50 (2011) 10560-10564.

Google Scholar

[8] F. Meng, S. Jin, Nano. lett. 12 (2011) 234-239.

Google Scholar

[9] M.J. Bierman, Y.K.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Science 320 (2008) 1060-1063.

Google Scholar

[10] T.D. Daff, D. Costa, I. Lisiecki, N.H. de Leeuw, J. Phys. Chem. C. 113 (2009) 15714-15722.

Google Scholar

[11] Z.Y. Zhou, N. Tian, J.T. Li, I. Broadwell, S.G. Sun, Chem. Soc. Rev. 40 (2011) 4167-4185.

Google Scholar

[12] I. Galanakis, N. Papanikolaou, P.H. Dederichs, Surf. Sci. 511 (2002) 1-12.

Google Scholar

[13] T.D. Daff, I. Saadoune, I. Lisiecki, N.H. de Leeuw, Surf. Sci. 603 (2009) 445-454.

Google Scholar

[14] E. Ye, S.Y. Zhang, S. H Liu, M.Y. Han, Chem. Eur. J. 17 (2011) 3074-3077.

Google Scholar

[15] S.L. Xu, X. Sun, H. Ye, T. You, X.Y. Song, S.X. Sun, Mater. Chem. Phys. 120 (2010) 1-5.

Google Scholar

[16] Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Edit. 48 (2009) 60-103.

Google Scholar

[17] X.H. Xia, S.F. Xie, M.C. Liu, H.C. Peng, N. Lu, J.G. Wang, M.J. Kim, and Y.N. Xia, P. Natl Acad. Sci. USA. 110 (2013) 6669-6673.

Google Scholar