Preparation and Characterization of Electrospun CuO Microfibers

Article Preview

Abstract:

Copper Oxide (CuO) microfibers with different morphologies were prepared by the electrospinning and calcination process. The formation process of CuO microfibers was analyzed by thermogravimetry and their microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed the spinnability and electrical conductivity of the polymer solution are affected by the concentration of acetic acid solution. The morphologies of CuO are closely related to the calcination temperature. The thin-walled tubulous microfibers can be obtained by calcination of the electrospun precursor with 8 wt.% acetic acid at 500 C for 2 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

334-338

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Sahay, J. Sundaramurthy, P.S. Kumar, V. Thavasi, S.G. Mhaisalkar and S. Ramakrishna, J. Solid State Chem. 186 (2012) 261-267.

Google Scholar

[2] S.S. Lee, H. Bai and Z. Liu, Water Res. 47 (2013) 4059-4073.

Google Scholar

[3] C. Yang, X. Su, F. Xiao, Sensor Actuat. B-Chem. 158 (2011) 299-303.

Google Scholar

[4] C. Liu, Y. Li, T. Minari, K. Takimiya and K. Tsukagoshi, Org. Electron 13 (2012) 1146-1151.

Google Scholar

[5] T. Oku, R. Motoyoshi, K. Fujimoto, T. Akiyama, B. Jeyadevan and J. Cuya, J. Phys. Chem. Solids 72 (2011) 1206-1211.

DOI: 10.1016/j.jpcs.2011.06.014

Google Scholar

[6] H. Zhang, M. Zhang, Mater. Chem. Phys. 108 (2008) 184-187.

Google Scholar

[7] J.P. Li, F.Q. Sun, K.Y. Gu, T.X. Wu, W. Zhai, W.S. Li and S.F. Huang, Appl. Catal. A- Gen. 406 (2011) 51-58.

Google Scholar

[8] A. Sadollahkhani, Z.H. Ibupoto, S. Elhag, O. Nur and M. Willander, Ceram. Int. 40 (2014) 11311-11317.

DOI: 10.1016/j.ceramint.2014.03.132

Google Scholar

[9] W.X. Zhang, H. Wang, Y.M. Zhang, Z.H. Yang, Q. Wang, J.F. Xia, X.N. Yang, Electrochim. Acta 113 (2013) 63–68.

Google Scholar

[10] T. Maruyama, Sol. Energy Mater. Sol. C. 56 (1998) 85-92.

Google Scholar

[11] R. Nirmala, K.S. Jeon, B.H. Lim, R. Navamathavan and H.Y. Kim, Ceram. Int. 39 (2013) 9651-9658.

Google Scholar

[12] M.A. Dar, Y.S. Kim, W.B. Kim, J.M. Sohn and H.S. Shin, Appl. Surf. Sci. 254 (2008) 7477-7481.

Google Scholar

[13] J. Zeng, J.C. Xu, J. Alloy. Compd. 493 (2010) 39-41.

Google Scholar

[14] D. Li, J.T. McCann and Y.N. Xia, J. Am. Ceram. Soc. 89 (2006) 1861-1869.

Google Scholar

[15] Z.Y. Zhang, C.L. Shao, X.H. Li and L. Zhang, J. Phys. Chem. C 114 (2010) 7920-7925.

Google Scholar

[16] S.S. Lee, H. Bai and Z. Liu, Water Res. 47 (2013) 4059-4073.

Google Scholar

[17] B.J. Wang, L.Q. Luo, Y.P. Ding, D.H. Zhao and Q.L. Zhang, Colloid. Surface. B 97 (2012) 51-56.

Google Scholar

[18] D. Li, J.T. McCann and Y.N. Xia, J. Am. Ceram. Soc. 89 (2006) 1861-1869.

Google Scholar

[19] Q. Gao, J.K. Takizawa, M. Kimura, Polymer 54 (2013) 120-126.

Google Scholar

[20] F.Z. Song, X.Q. Shen, M.Q. Liu and J. Xiang, Solid State Sci. 12 (2010) 1603-1607.

Google Scholar

[21] L.L. Zou, M.X. Jing, J. Wang, P. Wang and X.Q. Shen, J. Nanosci. Nanotechnol. 14 (2014) 2446-2450.

Google Scholar